• A
  • A
  • A

Giancarlo La Camera


Assistant Professor
Ph.D. University of Bern

Phone: (631) 632-9109 - office
Phone: (631) 632-9197 - lab
Fax: (631) 632-6661
Email: Giancarlo.LaCamera@stonybrook.edu

Life Sciences Building
Office: Room 513


Giancarlo La Camera studied Theoretical Physics at the University of Rome and received a Laurea (M. Sci.) in 1999. He went on to obtain a PhD in Neurobiology from the University of Bern in 2003. Between 2004 and 2008 he was a visiting fellow at the National Institute of Mental Health, where he performed research on the neural basis of complex cognitive functions. He then returned to the University of Bern where he focused on the topic of reinforcement learning in populations of spiking neurons. In early 2011 he joined the faculty of Stony Brook University as an Assistant Professor of Neurobiology & Behavior.

Research Interests

The long term goal of my research is the theoretical and experimental elucidation of the neural basis of cognitive function. My current interests include three main topics: i) the characterization of cortical activity, ii) the theory of spike-based learning, and iii) the neural basis of decision-making. The common theme of my efforts revolves around the central question of how to build powerful representations of external stimuli and events that are relevant to behavior. 

i) Neural activity in cortex is highly variable and richly structured, both in the presence ('evoked') and in the absence ('ongoing') of overt sensory stimulation. I'm interested in the origin and nature of neural variability and in the precise relationship between ongoing and evoked activity. I investigate these questions by analyzing experimental data and by modeling the observed phenomenona with networks of spiking neurons. 

ii) Both during development and during our day-to-day activities, we learn by purposefully modifying the synaptic connections among our neurons. These experience-dependent modifications depend on the 'local' spiking activity of the neurons and on the 'global' action of neurotransmitters, which are broadcast throughout wide brain regions in the presence of relevant events (such as rewarding, or fearful, events). I'm interested in biologically plausible learning rules for large populations of spiking neurons that can handle crucial tasks, such as learning to identify relevant stimuli from a continuous sensory stream, without prior information on their relevance and timing. 

iii) I have a long-lasting interest in the neural basis of decision-making and its motivational and hormonal basis. In particular, I'm interested in how these processes depend on contextual factors and how they shape our processing of relevant stimuli (i.e., how we ‘see’ and interpret the world). Context is a powerful modulator of the way we make decisions. We are very susceptible to factors such as the way in which an option is framed or our emotional state when exposed to a choice between two equivalent options. I'm particularly interested in the neural substrate of decisions between options that are equivalent when considered solely on their 'economic' value. 

In addition to seeking a theoretical understanding of these phenomena, I team up with other research groups in the Department of Neurobiology and elsewhere to test our model predictions against empirical data.


  • Representative Publications
  • Laboratory Personnel
  • Luca Mazzucato, Ph.D. Physics, SISSA/ISAS Trieste: Sr. Postdoc (2012-13); Research Assistant Professor (2013-present)
  • Luisa Le Donne, M.Sc. Physics, Sapienza University of Rome: Graduate Student (2011-present)
  •   Alumni: 
  • Lucinda A. Davies, Ph.D. Biomedical Sciences, University of Leeds: Sr. Postdoc (2011-2015) -- now at ICON Clinical Research.