
Biol Cybern
DOI 10.1007/s00422-014-0608-4

ORIGINAL PAPER

Hebbian learning from higher-order correlations requires
crosstalk minimization

K. J. A. Cox · P. R. Adams

Received: 30 September 2012 / Accepted: 6 May 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract Activity-dependent synaptic plasticity should be
extremely connection specific, though experiments have
shown it is not, and biophysics suggests it cannot be. Extreme
specificity (near-zero “crosstalk”) might be essential for
unsupervised learning from higher-order correlations, espe-
cially when a neuron has many inputs. It is well known that
a normalized nonlinear Hebbian rule can learn “unmixing”
weights from inputs generated by linearly combining inde-
pendently fluctuating nonGaussian sources using an orthog-
onal mixing matrix. We previously reported that even if
the matrix is only approximately orthogonal, a nonlinear-
specific Hebbian rule can usually learn almost correct unmix-
ing weights (Cox and Adams in Front Comput Neurosci
3: doi:10.3389/neuro.10.011.2009 2009). We also reported
simulations that showed that as crosstalk increases from zero,
the learned weight vector first moves slightly away from
the crosstalk-free direction and then, at a sharp threshold
level of inspecificity, jumps to a completely incorrect direc-
tion. Here, we report further numerical experiments that
show that above this threshold, residual learning is driven
instead almost entirely by second-order input correlations,
as occurs using purely Gaussian sources or a linear rule,
and any amount of crosstalk. Thus, in this “ICA” model
learning from higher-order correlations, required for unmix-
ing, requires high specificity. We compare our results with
a recent mathematical analysis of the effect of crosstalk for
exactly orthogonal mixing, which revealed that a second,
even lower, threshold, exists below which successful learn-
ing is impossible unless weights happen to start close to the
correct direction. Our simulations show that this also holds
when the mixing is not exactly orthogonal. These results
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suggest that if the brain uses simple Hebbian learning, it
must operate with extraordinarily accurate synaptic plastic-
ity to ensure powerful high-dimensional learning. Synaptic
crowding would preclude this when inputs are numerous,
and we propose that the neocortex might be distinguished by
special circuitry that promotes extreme specificity for high-
dimensional nonlinear learning.
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1 Introduction

It is widely believed that activity-dependent adjustments of
the strengths, or “weights”, of synaptic connections con-
tribute significantly to learning underlying cognition and
behavior. Such changes may reflect a combination of new
synapse creation or elimination (in extreme cases, forming
new connections or removing old ones), unsilencing or resi-
lencing of existing silent synapses, and graded or discrete
changes in individual synapse strengths. Such changes would
occur partly in response to local signals, such as the conjoint
activity of pre- and/or postsynaptic neurons, in a Hebbian
manner. Hebbian learning is driven by input–output firing
correlations and therefore by input statistical regularities, in
a connection-specific manner. However, the chemicals medi-
ating synaptic plasticity inevitably diffuse, which, combined
with the high synapse density needed when neurons receive
many inputs, makes it difficult or impossible that the adjust-
ments could be completely connection specific. For example,
in the case of NMDAR-mediated LTP, it is thought that the
narrow spine neck, endowed with calcium pumps (Feng et
al. 2007), reduces calcium escape to the shaft and thence
to neighboring synapses (Koch and Zador 1993; Sabatini et
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al. 2002; Wickens 1988; Yuste and Denk 1995), minimizing
inspecificity or “crosstalk.” However, the spine neck must
also be wide enough to ensure that synaptic currents reach
the dendritic shaft. Related conflicts may limit effective use
of synapse-like nanoscale memristors (Kim et al. 2011; Von-
tobel et al. 2009).

It has been suggested that adequate electrical coupling and
chemical isolation can both be achieved (Koch and Zador
1993) but data suggest that neither is perfect (Araya et al.
2006; Matsuzaki et al. 2004; Noguchi et al. 2005; Palmer
and Stuart 2009), and that compromise is inevitable. Indeed,
classical LTP is not completely synapse specific (Bi 2002;
Bonhoeffer et al. 1989; Engert and Bonhoeffer 1997; Har-
vey and Svoboda 2007), and it seems unlikely that other
forms of Hebbian learning, such as LTD, could be either
(Reynolds and Hartell 2000). It is possible that under such
circumstances at least certain types of learning, involving
repeated gradual exposure to patterned stimuli might com-
pletely fail as a result of the accumulation of small errors,
even though they would succeed if adjustments were more
accurate, in a manner analogous to the way natural selec-
tion fails if polynucleotide copying is insufficiently accu-
rate (Eigen 1971b). We are interested in the possibility that
certain hitherto poorly understood neocortical microcircuits
might be involved in preventing such an “error catastrophe”
(Adams and Cox 2002a,b; 2006), thereby facilitating sophis-
ticated learning underlying complex cognition and behavior.
The ultimate potential of “machine learning” to augment
or emulate human intelligence might also depend on the
development of massively parallel hardware that can accu-
rately read and adjust connection weights (Likharev 2008);
issues of weight readout or adjustment independence may
also become paramount here. Learning often involves com-
binatorial explosions which might only be tamable if con-
nections can be read and updated in massively parallel and
specific fashion. A fundamental problem for effective high-
dimensional learning might simply be ensuring that weight
adjustments do not directly and adversely affect each other
despite inevitable close-packing.

Perhaps very small inaccuracies could be neglected, but
even tiny errors might gradually compound (Eigen 1971a).
We recently studied (Cox and Adams 2009; Radulescu et
al. 2009) the behavior of some simple classical “connec-
tionist” Hebbian rules, modified to reflect possible connec-
tional inspecificity in weight updating, “crosstalk.” We made
the simplest possible assumption: Weight update vectors are
modified by multiplication by an “error matrix” E, which
reflects the way that the update initiated by local activity
is redistributed, on average, over all the available synaptic
connections. Standard neural network learning would corre-
spond to the special case E = I (the identity matrix). We have
focused on unsupervised learning, because it seems likely
that this is important in the cortex (Hinton and Sejnowski

1999), and involves repeated slow adjustment driven by input
statistical regularities. We neglect the role of spike timing and
use positive or negative, continuous, activities and weights.
The situation in the brain would be more complicated, but
simple connectionist models do seem to capture basic aspects
of neural learning, such as representation of the underlying
hidden causes of the input data stream.

Naïve correlation-driven Hebbian learning is unstable, but
can be stabilized by preventing unlimited weight increases
or decreases. We have considered 2 versions of stabilized
Hebbian learning, either linear or nonlinear in the postsynap-
tic activity (Adams and Cox 2002a; Cox and Adams 2009;
Radulescu et al. 2009). Of course, the overall rule is always
nonlinear, because of assumed stabilizing normalization, but
throughout this paper we use “linear” to refer to the case
where the Hebbian part is linear in the postsynaptic activity.
In the linear case, specific learning typically converges to the
dominant eigenvector of the input covariance matrix C (Oja
1982). With crosstalk, learning converges to the dominant
eigenvector of EC (Botelho and Jamison 2004; Radulescu et
al. 2009); this can deviate significantly from that of C, espe-
cially at high error or when the eigenvalues of C are quite
close to each other (weakly patterned correlation). However,
except in the special “unbiassed” case, when inputs do not
privilege particular connections, a situation corresponding
to development rather than learning, there are typically no
bifurcations in the dynamics at critical error levels, and the
outcome is qualitatively unaffected by crosstalk. The unbi-
assed case leads to either equal weights or broken-symmetric
“segregation”; the weight-equalizing effect of crosstalk tends
to favor the former (Radulescu and Adams 2013); see also
(Elliott 2012).

However, sophisticated cognition and learning seem to
require higher-order statistics (Field 1994), which give clues
to the underlying causes of observations. A very simple,
transparent and popular assumption has been the ICA model,
where the inputs are generated by linearly mixing, via a
square matrix M, independently fluctuating “sources” at least
one of which has a nonGaussian distribution (Amari et al.
1996, 1997; Amari 1998; Bell and Sejnowski 1997; Hoyer
and Hyvarinen 2000; Hyvarinen and Hoyer 2000; Hyvarinen
et al. 2001). In particular, a neuron using an accurate, normal-
ized, correctly signed nonlinear Hebbian rule can always suc-
cessfully learn a row of the inverse of an orthogonal M, M−1,
so its output “tracks” the fluctuations of a corresponding non-
Gaussian source (Hyvarinen et al. 2001; Hyvärinen and Oja
1998). Orthogonal mixing of independent sources maintains
the absence of pairwise input correlations; pairwise decorre-
lation could plausibly be achieved by suitable preprocessing
(Atick and Redlich 1990; Srinivasan et al. 1982; Kuang et al.
2012). When the neuron’s weight vector lies in the direction
of an unmixing row, it lies parallel to the column of M that
matches the corresponding source, so that average changes
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in the weight vector must also lie in that direction and are
unaffected by the behavior of the other sources. Imposing a
constraint on the length of the weight vector and choosing an
appropriate sign for the learning rule (Hebbian or antiHeb-
bian, depending on the source distribution and the nonlinear-
ity) stabilizes this equilibrium. Thus, a completely accurate
nonlinear learning rule allows the output to exactly recover
an underlying “cause” of the inputs, a fluctuating source. Our
recent simulations suggest that this is no longer exactly true
if the rule is inaccurate, and above a sharp error threshold,
no longer true at all (Cox and Adams 2009). Furthermore,
we found that even if M is not perfectly orthogonal, while
an accurate rule still almost always converges close to a col-
umn of M, it does not do so at all above a threshold crosstalk
level. However, above this threshold, the inspecific rule still
appeared to converge to definite weights. Here, we clarify the
nature of this failure. An illuminating mathematical analysis
of an important special case of the ICA-with-crosstalk model
recently appeared (Elliott 2012). This analysis assumed that
the inputs were perfectly white (i.e., orthogonal mixing). We
use this analysis as a guide in presenting and discussing our
results.

2 Methods

The basic approach was to simulate nonlinear Hebbian learn-
ing by a model neuron driven by input patterns derived
by mixing independently fluctuating sources one of which
has a nonGaussian distribution (which induces the infor-
mative input higher-order correlations (HoCs) see also
(Rattray 2002)). We studied only learning by single neu-
rons (and therefore, only “postsynaptic” crosstalk, occurring
between different connections on the same neuron, caused
for example by dendritic intracellular diffusion of calcium
or downstream signals). Presumably similar issues would
also affect “presynaptic” crosstalk (Cox and Adams 2009;
Schuman and Madison 1994) caused by intra-axonal diffu-
sion between connections made by the same axon on differ-
ent postsynaptic neurons. Because such learning is distorted
or prevented by noninformative second-order correlations
(SoCs) (see Sect. 2.4), ideally the mixing should be “orthogo-
nal”, so that inputs SoCs are eliminated (“whitening”). How-
ever, since it is unlikely that perfect whitening could be
achieved biologically, we somewhat relaxed the strict orthog-
onality assumption, as well as relaxing the assumption that
the Hebb rule is completely synapse specific. The remainder
of the Methods details the procedures and necessary back-
ground (see also Cox and Adams 2009). It should be noted
that related recent mathematical analyses (summarized in
Sect. 2.4) by Elliott (2012, and personal communications)
provide much needed additional rigor and insight. The pub-
lished detailed analytic results use more restrictive assump-

tions, and, for analytic tractability, only a cubic nonlinearity.
We consider some aspects of the relation between the analy-
sis and our numerical results in the Sect. 4.

2.1 Mixing matrix, source and input vectors

We use the well-known ICA model (square linear mixing of
independent univariate “sources” by an invertible matrix M,
or Mo derived therefrom; see below) because it exhibits, in
the simplest possible form, the core feature of learning from
higher-order correlations HoCs by a nonlinear Hebbian rule.
The sources si take on successive random real values dis-
tributed symmetrically around zero according to a defined
distribution, which we take to be either Gaussian or Lapla-
cian (i.e., superGaussian). Note that while it is necessary
that all but one source be nonGaussian to recover all the
rows of M−1, to learn only one row and thus recover the
corresponding source, only that source must be nonGaussian
(Rattray 2002). Throughout this paper, we use this one non-
Gauss source condition.

The input vector x was calculated using Eq. (3) below. In
this paper, untransposed vectors are column vectors. We use
the standard one-unit ICA rule (Hyvärinen and Oja 1998)
which requires an orthogonal mixing matrix to guarantee
convergence.

It is usually assumed that a suitable preprocessing step
(for example, using PCA, or “ZCA”, which produces center-
surround receptive fields for natural images (Bell and
Sejnowski 1997), “whitens” the inputs (i.e., decorrelates
and equalizes their variances, so C = I), such that if they
were generated by linear mixing, the effective overall mixing
matrix is orthogonal (Hyvarinen et al. 2009; Hyvarinen et al.
2001). However, it seems unlikely that perfect decorrelation
could be achieved biologically, partly because of sampling
or finite learning rate problems, and partly because crosstalk
would also distort any PCA/ZCA-like learning required for
preprocessing (Radulescu et al. 2009). Fortunately, we found
that in almost all cases (i.e., starting with various randomly
generated M and weights), perfect whitening is not neces-
sary for good ICA learning, even though it is necessary to
guarantee successful learning for arbitrary M. We therefore
typically relaxed the requirement that the effective M be
exactly orthogonal, in the following manner (see also Cox
and Adams 2009). A small batch (typically 1,000–10,000)
of NB input vectors xB, generated using a starting mix-
ing matrix M whose elements were chosen randomly, with
uniform distribution between 0 and 1 [Eq. (1) below], was
used to calculate a small-sample covariance matrix CB. This
imperfectly, but unbiassedly, estimates the true C (which is
defined for an unlimited sample). By varying the batch size
NB, we could vary how well CB estimated C and thus how
efficient the “offwhitening” of the input vectors x used for
learning would be. New examples of source vectors were
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then mixed using Mo [an approximately orthogonal mixing
matrix; Eq. (2) below] where C−1/2

B is a decorrelating matrix
(which is equivalent to ZCA whitening, Bell and Sejnowski
1997) to generate a new, larger batch of NL offwhite inputs
vectors, which was used to drive learning. This procedure
mimics what might happen biologically: Early stages of the
brain (e.g., in the retina) find approximately decorrelating
weights, and then, later stages (e.g., cortex) find weights that
reduce higher-order correlations of nearly white inputs. The
procedure can be summarized:

xB = Ms (1)

Mo = C−1/2
B M (2)

x = Mos (3)

We did not investigate other whitening matrices (e.g., a PCA-
based, rather than ZCA-based, matrix), which would gener-
ate slightly different nearly orthogonal mixing matrices Mo

from the same starting M.
We found that under these circumstances, when one starts

with random weights, learning would almost always con-
verge (within the limit set by the finite learning rate), in the
absence of crosstalk, quite close to a row of M−1

o , provided
the batch number NB was reasonably large (≥1,000), so the
input vectors driving learning were well whitened [see also
Eq. (9) Sect. 2.4]. But since Mo is not exactly orthogonal, the
appropriate row of M−1

o , the “IC”, was not exactly equal to
the corresponding column of Mo. We found that the specific
rule converged to a direction which was even closer to the
appropriate column of Mo rather than the row of M−1

o . For
example with a learning rate k = 10−4, for 15 randomly cho-
sen mixing matrices, the average difference of the cosine of
the column weight vector angle from exactly 1 (i.e., perfect
alignment) was 0.00882, while the row weight vector cosine
difference from 1 was 0.01269. When the learning rate was
decreased by a factor of 200, both cosines decreased even
further, as expected, but the decrease in the column cosine
was much greater (fivefold) than in the row cosine, suggest-
ing that the rule converges exactly to the appropriate column
of Mo [see Sect. 2.4 Eq. (9)]. However, our plots show the
weight vector direction relative to the true IC, the appropriate
row of M−1

o .
Throughout the paper, we used the estimated covariance

matrix CL based on the actual vectors x used in the run,
rather than the theoretical covariance matrix approached in
the large number of vectors limit (which is equal to MoMT

o )
in order to calculate the eigenvectors of EC. For all specific
examples illustrated, we give the seed number used to cre-
ate the relevant initiating random M. If the batch number
NB was too small, or sometimes if the weights were started
exactly at the appropriate eigenvector of C, the rule would
converge to or stay at this principal component (“PC”) eigen-
vector (see Sects. 2.4 and 3). We often slightly misuse this

abbreviation and for brevity refer to an eigenvector of EC
or even E as a “PC” (see also Elliott 2012); whether this is
an eigenvector of EC, E (perfect whitening) or C (perfect
specificity) should be clear from the context. An alternative,
and apparently less arbitrary, procedure would have been to
start with an exactly orthogonal M and introduce small per-
turbations (Cox and Adams 2009). However, we wanted to
study various random mixing matrices, which would have
entailed constructing a column at random and then making
the other columns mutually orthogonal. This again involves
a rather arbitrary choice of which column should correspond
to the nonGaussian source.

We measured the orthogonality of Mo by defining a quan-
tity OF equal to the Frobenius norm (square root of the sum
of the squares of all the elements) of (I − MoMT

o ) where
I is the identity matrix. For the case shown in Fig. 2b, the
partial whitening made Mo twenty times “more orthogonal”
than M, since the OF for Mo was 0.0807 and for M it was
1.609. When Mo was not sufficiently orthogonal, the error-
free 1-unit rule instead converged close to the appropriate
eigenvector of C, even with nonGaussian inputs.

2.2 Learning rule

We used a standard online negentropy maximizing 1-unit rule
(Hyvarinen et al. 2001; Hyvärinen and Oja 1998), with out-
put y = wTx, where w is the neuron’s weight vector, and x its
input. We therefore ignore the important problem of coordi-
nating learning in different neurons so that different rows of
M−1

o can be learned. The necessary conditions for the stan-
dard 1-unit rule to converge to a row of M−1

o in the low learn-
ing rate (= k) limit are that Mo is orthogonal (i.e., the inputs
to the neuron are white and have equal variance, so that the
input covariance matrix C = I) and the weight vector is nor-
malized to unit length after each update. Thus, convergence
to a row of M−1

o implies convergence to a column of Mo. As
described above, in this paper, Mo is almost orthogonal which
in practice still usually allows convergence. Also, the sign of
the nonlinear Hebbian term must be chosen to “match” the
input statistics (sub or superGaussian) for any given nonlin-
earity; the exact form of the nonlinearity f(y) is otherwise
unimportant. We used either f(y) = y3, which requires a
positive Hebbian term, or tanh(y), which requires a negative,
“antiHebbian,” term for superGauss sources (Hyvarinen et al.
2001). Thus, the basic rule used in this paper is:

w (t + 1) = w(t) + (sgn) kf (y) x

(first, Hebbian part) (4)

followed by

w (t + 1) = w (t + 1) / ||w (t + 1)||
(second, normalizing part) (5)

where k is the learning rate and (sgn) the appropriate sign.
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The first part of this rule is local and biologically plausible.
It could be approximated by spike coincidence detection. The
second, normalizing, step is apparently nonlocal, but could
perhaps be achieved biologically by some combination of
rescaling, homeostasis, an Oja-type local process (e.g., sub-
traction of wy2) or STDP. We do not want to make any spe-
cific assumptions about how this term, which guarantees that
the dynamics has stable fixed points, is actually implemented
biologically. The main focus here is on the nature of these
stable fixed points. Therefore, we simply divided the weight
vector by its current norm after each update. Note that 1-
unit ICA can also be done using other nonlinear rules, which
might show quite different crosstalk effects. For example, a
kurtosis maximization rule has an additional negative weight-
dependent term (Hyvarinen et al. 2001); this rule is resistant
to the effect of crosstalk [Elliott, personal communication;
see also Eq. (8) below]; however, this rule might be difficult
or impossible to implement biologically.

Our key assumption is that neither of the 2 parts of
the learning rule (i.e., Hebb and normalization) can be
accurately implemented: The calculated weight changes
are redistributed using an error matrix E or F, reflect-
ing crosstalk in whatever processes implement the Heb-
bian part (E) or the normalizing part (F). The biologi-
cal pattern of crosstalk is, on a spike-to-spike basis, likely
to be stochastic and to reflect the current detailed con-
nectivity. However, recent data (Wilbrecht et al. 2010; Xu
et al. 2007) show that this connectivity varies through-
out the learning process. In the simplest case, neither the
crosstalk stochasticity nor the fluctuating connectivity would
be correlated with the current input pattern, so we approxi-
mate the exact unknown and fluctuating pattern of crosstalk
with a single average pattern, represented by E (or F).
This might be invalid if spine necks dilate/lengthen in
response to strengthening, or if weight changes are mainly
achieved by anatomical changes. For simplicity, we usu-
ally assumed that crosstalk does not itself introduce a par-
ticular bias into learning, with offdiagonal elements of E
(or F) equal to E/(n + 1) (E is a “total error” para-
meter, and n is the dimensionality) and the diagonal ele-
ments equal to 1 − E . E reflects the combined effect of a
connection-intrinsic parameter b and the number of inputs
n (Cox and Adams 2009; Radulescu et al. 2009), with
b = E/(n(1 − E) ≈ E/n. In all the figures, we use b
as a crosstalk parameter, rather than E. The “isotropicity”
implied by equal offdiagonal elements is likely to emerge
on average because individual connection weights are com-
posed of multiple, anatomically plastic, synapses scattered
over the dendritic tree (Jia et al. 2010; Radulescu et al.
2009). However, similar results are obtained with an error
matrix (n ≥ 3) that is not exactly uniform [Results; (Cox and
Adams 2009)]. The modified learning rule therefore becomes
(t is the iteration step number):

w (t + 1) = w(t) + E[(sgn) kf (y) x]
modified Hebbian part (6)

or

w (t + 1) = w(t + 1)

−F [w (t + 1) − (w (t + 1) /||w (t + 1) ||)]
modified normalization part (7)

where y = wTx and x = Mos. We always set either F or,
for the last section of the Results, E as the identity matrix, to
investigate the 2 forms of crosstalk separately (see Sect. 4).
All sources had equal variance.

2.3 Foldiak bars

N 2-dimensional binary input vectors were created by con-
catenating the N rows of “images” of combinations of indi-
vidual N-dimensional “bars” (rows or columns of 1’s against
a background of −1’s or 0’s). The 2N possible individual
bars were combined to form images and hence input vectors
in one of 2 ways. In a “standard” 0,1 protocol (Foldiak 1990;
Triesch 2007), the number of input “bars” was random (with
probability p usually set at 1/N , with N = 6 or 10). Where
bars coincided, pixels were set to 1 not to 2, making the com-
binations nonlinear. Input vectors are then divided by their
norm, centered by removing the mean and used as inputs to
an ICA neuron with a fixed, cubic, normalized learning rule
as described above. Triesch (Triesch 2007) notes that a single
unit with a fixed nonlinearity can learn a bar. Alternatively,
in a “2-bar” protocol, 6 by 6 binary (−1,1) uncentered image
vectors were generated that always consisted of just 2 bars,
chosen randomly from the set of 12 possible bars, with over-
laps set to 1. The learning rate in both models was constant
but varied between 0.0001 and 0.000001 between different
runs. Neither protocol used whitening.

2.4 Elliott’s analysis

Here, we summarize Elliott’s recent analysis of the impor-
tant special case where the mixing matrix is orthogonal and
thus the inputs are “white,” maintaining the sources’ lack
of second-order correlation. He notes that because of the
source independence, one can average the learning equations
to yield, in the low rate limit, with the cubic nonlinearity and
only one nonGaussian source (kurtosis k) the deterministic
equation

dw
dt

= PE[k (mTw)3 m + 3w] (8)

P = (I−wwT) is a projection matrix that corresponds to the
normalization step in the stochastic rule, and m is the appro-
priate column of the mixing matrix. The fixed point behavior
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Fig. 1 Sketches of the qualitative behavior of the white 1-nonGauss
model according to the analysis in (Elliott 2012). a shows the fixed
points as a function of crosstalk and mixing angle α. b shows how
critical crosstalk values depend on α. See text for further explanation

of this equation depends on the angle α between the principal
eigenvector of E (the “PC”) and m. When α is less than a crit-
ical value αc defined by Elliott’s equation 4.37, there is only
one fixed point, which is stable and moves smoothly from the
m direction to the PC of E direction, as crosstalk increases
from zero to the maximum value where all specificity is lost.
Above αc, 2 dynamical bifurcations arise. The first occurs at
a lower crosstalk threshold ec1, with the creation of a stable
approximate PC of E fixed point, and the second at a higher
threshold ec2, with the annihilation of the approximate m
fixed point by collision with an unstable fixed point created
at the first bifurcation. Between ec1 and ec2 a bistable regime
exists, where the starting weights determine whether the sta-
ble approximate m or PC of E fixed point is selected. Elliott
graphs (his figure 16) the FP direction(s) as a function of both
α and crosstalk. For the reader’s convenience, we present a
sketch of this figure in Fig. 1a. The ordinate represents the
angle between fixed point directions and the column of M
corresponding to the supragaussian source, and the abscissa
the crosstalk parameter e, for all possible combinations of α

and e.
The FPs lie on a curving sheet in this three-dimensional

space, which develops a fold at the critical α value (a “cusp
catastrophe”; (Strogatz 1994)), with the 2 positive sloped sur-
faces corresponding to the stable fixed points and the negative
sloped surface to the unstable fixed point. Thus, as crosstalk
decreases from initial complete inspecificity (e = (n−1)/n),

the steady state weights track the approximate PC solution
until they reach the edge of the upper fold, at which point
they “fall” to the lower surface, the approximate IC solution
that was created at the upper critical (mixing angle depen-
dent) error; conversely, if one starts at the IC at complete
specificity, then with increasing error the weights track the
approximate IC solution until they reach the right-hand fold,
at which point they “jump” up to the now exclusively sta-
ble approximate PC solution on the upper surface—a solu-
tion that was created at the lower, mixing angle dependent,
threshold.

The dotted lines correspond to 2 constant-α cuts through
this 3D surface. The red line cut corresponds to a constant
subcritical angle; the single, stable, equilibrium weight vec-
tor direction changes smoothly with error. The blue cut cor-
responds to a fixed supracritical angle; the cut forms a sig-
moid relation, between equilibrium directions and error. At
very low error, there is only one, stable, equilibrium; at a
low critical error, 2 new equilibria are born in a saddle-node
bifurcation; one of these is unstable, and the other is the stable
approximate PC solution. At a second higher critical error, the
approximate IC solution disappears in a second saddle-node
bifurcation, by collision with the unstable solution, leaving
only one equilibrium, the stable approximate PC.

Elliott also plots the 2 critical crosstalk values as a function
of αc (his figure 15b dotted line), which form a “badge”
perimeter, the upper line of which corresponds to ec2 and
the lower line to ec1. We present a sketch of this figure in
Fig. 1b, with the 4 regions of the model’s parameter space
defined by the badge colored differently. The vertical lines
through the lateral “cusp” points of the badge at αc define the
transition from the smoothly deforming or “sliding” regime
(gray; one fixed point) to the bifurcating regime. The badge
perimeter encloses a yellow zone, where both approximate
m and PC of E solutions are stable. Above the badge lies
a red zone where the only fixed point is the approximate
PC of E, and below the badge a green zone where only the
approximate m fixed point is stable. Only in the complete
absence of crosstalk (the standard ICA model; Hyvarinen
et al. 2001; Rattray 2002) is the exact m the only stable
fixed point. However, at sufficiently low crosstalk, the only
stable fixed point is a good approximation to m; above αc

the crosstalk level must be very low to ensure good learning
irrespective of the starting weights (i.e., the green zone). In
the yellow zone, good learning can be achieved only with
low crosstalk and if the starting weights happen to lie close
to m.

The key feature of Eq. (8) generating these interesting
dynamics is the competition between the 2 parenthetical
right-hand terms. The first term drives the weight vector
toward m, and the second term drives it in its current direc-
tion. However, in the absence of crosstalk, normalization can-
cels growth in the w direction, so the weights stabilize at m.
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Fig. 2 Learning with all Gauss sources. The plots show the cosines
of the angles (theta) between the averaged weight vector and the 3
eigenvectors of ECL (PC 1,2,3 with decreasing eigenvalues) at various
crosstalk levels (“error,” measured using the single connection parame-
ter b defined in the Sect. 2). Standard errors are less than the symbol

sizes. With a linear rule, the results were indistinguishable from those
for the cubic rule (panel a). Seed 140, OF = 0.1931, k = 0.00005,
batch size NB = 1,000. Panel b shows similar results using a tanh
nonlinearity. Seed 23, batch 1,000, k = 0.002, OF = 0.0807

Crosstalk modifies both competing terms, and normalization
no longer exactly cancels growth due to the second term. The
outcome of the competition can either be a smooth interpo-
lation between m and the PC (gray zone), or near complete
victory by one or the other (green or red zones), or by both
(depending on the starting conditions).

Our numerical experiments used nonorthogonal mixing
matrices and were mostly obtained prior to the availability
of Elliott’s analysis. In this case, one can derive a similar
averaged deterministic “colored” equation:

dw
dt

= PE[k (mTw)3 m + 3wTCwCw] (9)

Note that in this case setting, k = 0 (i.e., using all Gaussian
sources) reduces the equation to the standard PCA form (Rad-
ulescu et al. 2009; Oja 1982). Elliott (Elliott 2012) does not
analyze the dynamics of Eq. (9), but the close resemblance to
Eq. (8) suggests that one might expect qualitatively similar
behavior, now with competition between the m term and a
PC of EC term, as reported below.

For other odd power function nonlinearities, or for func-
tions that can be expressed as sums of odd power, the basic
form of the equations remain the same, though the scalars
associated with the m and w variables differ (Elliott, per-
sonal communication).

3 Results

3.1 All Gauss sources

A linear normalized Hebb rule responds only to SoCs and in
the presence of crosstalk generically converges to the max-
imal eigenvector of EC (Radulescu et al. 2009), or “PC.”

Here, we study the ICA learning, model, with inputs gen-
erated by linear square mixing of independent sources only
one of which has a nonGaussian distribution but first we
present, as background, some results using all Gauss sources,
for which ICA learning is not possible.

Jointly Gaussian signals have higher-order moments, but
no higher-order cumulants (or crosscumulants), and one
might expect that the nonlinear Hebbian rule driven by jointly
Gaussian, dependent, inputs would therefore also converge
to the appropriate eigenvector of C, or, in the presence of
crosstalk, of EC [see Methods Sect. 2.4, Eq. (9)]. In simu-
lations with finite learning rates, the relevant C would pre-
sumably be that calculated for the sample of vectors that
is actually used for learning, CL, rather than the long-term
expectation, MoMT

o . Figure 2a shows that indeed a cubic
Hebbian (positive sign) rule converges to the explicitly cal-
culated dominant eigenvector of ECL, which was typically
very close to the eigenvector of MoMT

o . Using a linear, SoC-
driven, Hebb rule under the same conditions also gave this
result. Even when CL was extremely close to I, as in Fig. 2a,
the cubic Hebb rule would converge to the dominant eigen-
vector even at zero error.

Single-unit ICA is often done using the statistically more
robust tanh nonlinearity, which requires an antiHebb rule
for superGaussian sources (Hyvarinen et al. 2001; Hyväri-
nen and Oja 1998). Figure 2b shows that a linear antiHebb
rule converges to the least eigenvector of EC, as one might
expect. Exactly the same behavior was seen using the tanh
antiHebb rule and all Gauss inputs (Fig. 2b). Again, there was
a smooth movement, as crosstalk increased, from the exact
least eigenvector of C at zero crosstalk to an exact least eigen-
vector of EC at high crosstalk. However, presumably because
the difference between the two minor eigenvalues of C was
very small, a very low learning rate was required for conver-
gence without crosstalk. These results with antiHebb rules
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are somewhat counterintuitive: making weight adjustment
less specific favors outcomes with more unequal weights.
Also, while the use of an antiHebb linear rule is expected to
make the attracting fixed point of the linear Hebb rule unsta-
ble, it is not entirely clear theoretically that it would always
selectively stabilize the least PC, rather than for example the
second PC (n ≥ 3), and a fortiori in the case of a nonlinear
rule. Nevertheless, we typically found empirically that the
same PC was selected using either a nonlinear or a linear
rule.

3.2 Nonlinear rules with one nonGauss source and no
crosstalk

Probably, no biological process could perfectly whiten
inputs, and therefore, the usual assumption made in 1-unit
ICA, and in Elliot’s analysis, that the mixing matrix is
exactly orthogonal might be inappropriate. However, biology
could achieve good decorrelation, and therefore, we studied
a slightly modified ICA model, using approximately orthog-
onal mixing matrices, which we designate Mo, constructed
using limited samples (typically NB = 1,000) to estimate
CB, the whitening covariance matrix (see Sect. 2). One might
anticipate that since the correctly signed 1-unit rule always
converges to the appropriate row of M−1

o (which equals the
column of Mo corresponding to the 1-nonG source) when
Mo is orthogonal, it would almost always converge very
close to that row (i.e., the IC) if Mo is almost orthogonal,
though not exactly. We found that indeed this almost always
occurred, if the batch number NB used to construct Mo was
quite large (≥1,000) and the weights were randomly initial-
ized, although (see Sect. 2) convergence was even closer to
the corresponding column of Mo, as expected from Eq. (9).
Many examples can be seen throughout this paper. However,
as expected for small batches (≤100) and inadequate whiten-
ing, learning often (depending on the initial weights) failed
to converge to the appropriate column of Mo, and instead
converged to the expected eigenvector of C (or, in the pres-
ence of crosstalk, of EC). Interestingly, even though for large
estimating batches weights almost always converged to the
expected column with random weight initialization, we could
find occasional examples of Mo where if weights were started
at the appropriate eigenvector of C, they would remain there
indefinitely.

While we did not investigate these behaviors systemat-
ically, they are compatible with the notion that there are
generally 2 basins of attraction of the nonlinear error-free
unwhite dynamics, an “IC basin” that centers close to the
row of M−1

o and a “PC basin” that centers close to the appro-
priate eigenvector of C, as in Elliott’s analysis of the white
crosstalk model [see Eqs (8) and (9)]. The only case in which
the PC basin always vanishes is of course when C = I (all
eigenvalues degenerate), as usually assumed for the 1-unit

rule. This would be why convergence is only guaranteed in
the (practically unobtainable) perfectly white case, but for-
tunately almost always occurs as long as the whitening is
good.

3.3 Cubic rule and one nonGauss source with crosstalk

The 1-unit ICA learning rules for perfectly white inputs allow
almost any smooth nonlinearity to be used, which makes
them biologically plausible, but do require that the sign of the
Hebbian term be appropriately matched to the source statis-
tics and the nonlinearity (Hyvärinen and Oja 1998). If the sign
is mismatched to the single nonGauss source, we observed
instead convergence to the expected eigenvector of EC, as
described above for all Gauss sources. In this section, we
describe results using a positive Hebbian rule appropriate to
a Laplacian (superGauss) source using a cubic nonlinearity.

In many cases, particularly with only 2 input neurons,
we found that the stable learned weight vector rotated in
a smooth fashion as crosstalk increased (Fig. 4c), moving
gradually away from the row of M−1 toward the leading
eigenvector of EC. We call this type of behavior “sliding,”
and the Mo that produced it a “slider.” This behavior is very
similar to that seen in Elliott’s analysis of the orthogonal mix-
ing case for α < αc (Methods Sect. 2.4). Sliding behavior
was also sometimes seen using a tanh, antiHebb rule (not
shown). However, particularly for n ≥ 3, we often observed,
for many randomly generated mixing matrices, especially
when the IC direction differed greatly from the equal weight
direction (as expected from Elliott’s analysis, see Sect. 2.4),
that as crosstalk was gradually increased, the equilibrium
weight vector would suddenly change direction at a thresh-
old value, as described in (Cox and Adams 2009) for the
tanh case using 2 Laplacian sources, see below. Example
runs for one case are shown in Fig. 3, and 4a shows compiled
results using many runs, at various crosstalk levels, using
another Mo (the same Mo as in Fig. 2a). In the previous paper
(Cox and Adams 2009), we did not attempt to determine the
meaning of this new direction, which continues to change
slightly, relative to the fixed IC, as crosstalk increases further
beyond this threshold. Given the results in Fig. 2, and Elliott’s
analysis of the orthogonal case, it seemed plausible that this
new direction would correspond to that of the appropriate
eigenvector of EC. Thus, the nonlinear rule would become
almost blind to the HoCs present in the input above a sharp
threshold and would respond chiefly to SoCs, as though the
input distribution had switched to being equivariant jointly
Gaussian. Figure 4a shows that this surmise appears cor-
rect. At the threshold, the weights and the direction of the
weight vector suddenly shift to nearly match the calculated
PC of EC, and then track that direction with further increases
in crosstalk. Furthermore, we found that if we began with
all Gauss sources at an error rate above the threshold and
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Fig. 3 Effect of crosstalk on
ICA learning using a cubic rule
and 1 Laplace and 2 Gauss
sources. a shows the cosine of
the angle between the IC and the
current weight vector, starting at
zero error, when the initially
random weights (shown in the
right plot) rapidly move very
close to the IC. Error was then
increased to 0.05, resulting in a
small adjustment, and then to
0.07, producing a large shift
(and weight equalization) at the
indicated times. Seed 156,
NB = 1,000, LR = 0.00005,
OF = 0.1058

Fig. 4 Effect of crosstalk on learning with one Laplacian source. In
all the panels a–d, the y-axis shows the cosine of the angle theta
between the weight vector (w) and either the IC (appropriate row of
M−1

O ), or an eigenvector of EC, at equilibrium in the presence of vari-
ous degrees of crosstalk. The abscissa shows the error (crosstalk) para-
meter b. Panel a: The angle between w and the IC suddenly swings
by almost 80 ◦ at a threshold error near 0.055 (blackline). The blue
line is the angle between w and the calculated first PC of EC. N = 3,
OF = 0.1931, k = 0.00005, seed 140, batch 1,000, cubic nonlinearity.
(Compare with Fig. 2 A which is uses the same conditions except all
GGG Gauss sources). Panel b: The red line shows how the cosine of the
angle between the weight vector and the first row of M−1

O (correspond-
ing to the Laplacian source) changes with error, with a sharp change
at b = 0.0425). The blue line is for w against the least PC of EC;
k = 0.002. Similar results were obtained with k = 0.0002, N = 3,

OF = 0.0807, seed 23, NB = 1,000, k = 0.002, tanh nonlinearity.
(Compare against Fig. 2b which is the same except all Gauss sources).
Panel c: Sliding behavior. The weight vector smoothly shifts toward the
first PC of EC, and away from the IC, as crosstalk increases. N = 2,
OF = 0.0825, seed 2, k = 0.00005, batch = 1,000, cubic nonlinear-
ity. Panel d: A near-orthogonal MO was constructed from an initial M
(seed 5) by partial whitening (NB = 1,000). The cosine of the angle
between the IC found at zero crosstalk, and that found at equilibrium in
the presence of various degrees of crosstalk is plotted (blue line). This
angle suddenly swings away from the IC by almost 60◦ at a threshold
error of 0.076. The weight vector then aligns close to the direction of
the minor PC of EC (pink line) rather than to that of the dominant PC
(yellow). N = 2, OF = 0.0895, seed 5, k = 0.002, Batch = 1,000, tanh
nonlinearity (color figure online)
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then switched to one Laplacian source halfway through the
run, the weight vector hardly changed. For instance, for seed
140 (N = 3, k = 0.00005, OF = 0.1931) at crosstalk
b = 0.08 with all Gauss sources, the weight vector converged
to [0.48,0.71,0.50] and when one source was made Laplacian
the weight vector changed to [0.50,0.70,0.50]. Under iden-
tical conditions but with crosstalk b = 0.03 (well below the
upper threshold, see below) with initially all Gauss sources
the equilibrium weight vector [0.40,0.81,0.41] changed min-
imally, to [0.41,0.81,0.40], when one source was switched to
a Laplacian distribution. We also found that when E had
unequal off-diagonal elements, but remained stochastic with
the same diagonals (an “anisotropic” case), the erroneous
cubic rule still converged to the (new) principal eigenvector
of EC. For instance, for seed 140 after the error threshold
(0.08 in this case), E was changed from

⎡
⎣

0.8475 0.0763 0.0763
0.0763 0.8475 0.0763
0.0763 0.1763 0.8475

⎤
⎦ to

⎡
⎣

0.8475 0.0163 0.1363
0.0163 0.8475 0.1363
0.0163 0.1363 0.8475

⎤
⎦

The weight vector converged to [0.67,0.57,0.47], and the the-
oretical PC of EC was [0.67,0.57,0.46]. Other seeds showed
similar behavior.

3.4 tanh rule with one nonGauss source and crosstalk

Although the cubic rule is mathematically simpler, and more
straightforward because it uses a positive Hebb rule, for
which the outcome is unambiguous when using all Gauss
inputs, it carries the practical disadvantage that it can be sen-
sitive to outliers (Hyvarinen et al. 2001). A more robust rule
uses the tanh nonlinearity, which requires an antiHebb rule
with a Laplacian source. Here, as noted above, the stable
PC for all Gauss inputs corresponds to a minor (typically
the least) PC. This is the rule we used in our initial report
(Cox and Adams 2009), using 2 Laplacian sources. Figure 4d
shows an example using one Laplacian and one Gaussian
source, where there is a sudden swing to the (unambigu-
ous) minor PC direction at a critical crosstalk value b around
0.076.

A more completely studied case, with 3 sources, one
Laplacian, is shown in Fig. 4b. Here, there are 2 possible
minor PCs, but the PC selected at suprathreshold crosstalk
corresponds to the least PC. Once again, after the weights
move very close to the IC at zero crosstalk, gradually increas-
ing crosstalk produces further slight shifts away from the IC.
Then, at a sharp threshold, there is a dramatic swing in the
direction of w (mostly arising from a large change in one of
the weights), to align very close to the calculated least PC
of EC. With further increases in crosstalk, there is a second
drift in direction, closely tracking the shift in the PC of EC
direction.

3.5 Bistability

In order to see a clear jump over a small range of crosstalk
values in numerical experiments, it is obviously necessary
that the direction of the IC and PC be substantially differ-
ent. We surveyed about 15 examples of random matrices
Mo derived from initial random matrices M (n = 3) with
a good separation between the IC and the direction seen at
with crosstalk = 0.1, and of these around 1/2 showed a jump
at a threshold value of crosstalk. As already noted (Cox and
Adams 2009), the actual threshold appeared to depend on
the particular starting Mo used (see Elliott 2012). It also
depended to some slight degree on the learning rate (see Cox
and Adams 2009); typically, a large decrease in the learning
rate (twofold to tenfold) produced a small (<20 %) increase
in the error threshold estimate.

To estimate the threshold more exactly, the learning rate
should be very low, as in the example shown in Fig. 5, where
the learning rate it was set at 10−5. After initially allowing
the weights to stabilize very close to the IC at zero error,
crosstalk was introduced (b = 0.066). This produced a small
shift to an approximate IC. But then, after a highly variable
delay, without any further increase in crosstalk, the weights
moved much further, over a period of around 0.5 million
updates, to the PC direction (Fig. 5). Note that instead, at
b = 0.065, the weights, started at the IC, moved to and
remained indefinitely, at the approximate IC (at least for 5
million updates), whereas at e = 0.067 they shifted promptly
(within 0.5 million updates) to the PC (not shown).

This behavior strongly suggests that at certain crosstalk
levels there are 2 stable states of the weights, correspond-
ing to an approximate IC, and an approximate PC, as seen
in Elliott’s analysis of the orthogonal case. At slightly
higher crosstalk, only the PC is stable, and at slightly lower
crosstalk, the IC is indefinitely stable in the face of very small
fluctuations (and remains there if it starts there). We conclude
the true threshold lies very close to b = 0.066 in this case.

Just below this threshold, the direction of the weight vec-
tor shows large slow fluctuations, but just above it this slow
noise almost disappears. This presumably corresponds to the
marginal stability of the IC (very small basin of attraction)
and the almost global stability of the PC. Eventually, this
noise would always push the weights to the stable PC direc-
tion, while at a slightly lower error (0.065) the use of an
exceedingly low learning rate would indefinitely protect the
IC.

We also examined the tanh rule behavior very close to the
threshold at very low learning rates, as shown for the cubic
case in Fig. 5. Exactly the same result was found: A very
narrow range of crosstalk existed for which the approximate
IC, having been learned initially at zero error, lingered nois-
ily for long periods, but then eventually abruptly gave way to
the almost noiseless approximate PC, which then remained
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Fig. 5 Drop from just stable IC to fully stable PC at a single error rate.
Seed 140, cubic rule and a lower k (10−5) than in Fig. 3a. The 2 panels
are in identical conditions, but different runs, and show the cosines of
the angle between the weight vector and the IC (blue) and the other

rows of M−1. (green, red). Zero error initially brought the weights
rapidly to the IC. At 300 K epochs crosstalk was increased from 0 to
b = 0.066 and maintained; the angle then dropped, to a steady (but very
noisy) level corresponding to an approximate IC

indefinitely stable. Very slightly below this threshold, the
approximate IC was indefinitely stable, while very slightly
above it the approximate PC was reached immediately, with-
out any lingering at the approximate IC.

In all the numerical experiments described so far, the
weights were first brought very close to the IC at zero
crosstalk, since we wanted to see whether successful learning
from HoCs could survive imposition of update inspecificity.
Elliott (2012), while confirming and greatly clarifying our
main conclusion, that IC stability can be lost at a critical
crosstalk level, also shows that there is not simply a stability
swap at a unique threshold, but a fully bistable regime at inter-
mediate crosstalk values (i.e., between “lower” and “upper”
thresholds). Comparison of Eqs. (8) and (9) (Sect. 2) indeed
suggests that the colored and white cases should behave
similarly.

Bistability can easily be seen at fairly high learning rates,
and crosstalk values below but fairly close to the upper thresh-
old, where the fluctuating inputs cause the weights and their
direction to switch between discrete stable states (Fig. 6 b,c).

Similarly, at very low learning rates, one could set the ini-
tial weights at the calculated PC and then gradually increase
crosstalk until the weights suddenly shift close to the IC (i.e.,
in the opposite manner to that seen in Fig. 5). This protocol
defined a second, threshold, at lower crosstalk than the one
previously described, below which the PC lost stability, and
the IC became uniquely stable, similar to the orthogonal case
(Elliott 2012 and Fig. 1b). An example is shown in Fig. 6a.

As previously noted, as the upper threshold is approached
from below, slow fluctuations in the weights appear, a typical
sign of the approach to criticality (Scheffer et al. 2009). This

“slow noise” level dramatically decreased when the weights
underwent the shift from PC to IC (Fig. 6a). Interestingly,
there were rare cases (including the M used in Fig. 5), where
the PC remained indefinitely stable at very low learning rates
even when crosstalk was reduced to zero. Of course, if the
weights were started at random values, completely specific
learning almost always converged on the IC. However, as
already noted, when the whitening was very poor (very low
batch numbers), only the PC was stable even at zero crosstalk.
Clearly, the model shows hysteresis: It “remembers” whether
the starting weights are close to the IC or to the PC.

A particularly striking case arises when the IC is exactly
orthogonal to the PC (Elliott 2012), as illustrated in Fig. 7.
An orthogonal M (n = 2) with one column having equal
opposite-signed entries and the other equal entries was used.
The weights were started at the PC (i.e., equal and same-
signed); in the presence of very low crosstalk (panels a and
b, angle and weights respectively), they remained there indef-
initely, but if crosstalk was completely removed, after a delay
they snapped permanently to the IC (panels c and d). This
behavior corresponds to the central axis of the “badge” in
Elliott (2012, Fig. 15B; see Methods Sect. 2.4) and illustrates
that extremely low crosstalk levels can completely prevent
effective learning.

3.6 The effect of normalization crosstalk

In the numerical experiments described so far, normalization
crosstalk was absent (F = I). We briefly describe results
obtained by instead setting the Hebbian crosstalk matrix E
to the identity, and varying the (equal) offdiagonal elements
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Fig. 6 Bistability. Panel a: k = 0.00001, seed 140 (as in Fig. 5),
batch = 1,000, cubic nonlinearity. The initial part shows convergence
to the IC, and then at 200 K epochs b = 0.05 was applied, so the weight
vector moves to the approximate IC (blue plot; the red and green plots
show the angle cosines relative to the other rows of M−1

o ). Then, at
600 K epochs, crosstalk b was increased to 0.2, driving the vector to
the PC of EC. Then, at 800 K, crosstalk was set back to 0.05. How-
ever, initially the vector did not move to the IC but to the appropriate
approximate PC and stayed there (with slow large fluctuations) almost a

million epochs; then, at about 1.7 M epochs, it spontaneously switched
back to the appropriate approx IC, at a much lower noise level. Panels
b and c: The angle is in the left panel (IC blue line and PC green line)
and weights in the right. Initially, w was set to the IC with 0 error. Error
of b = 0.03 was introduced at 50,000 epochs, at the arrow. The learn-
ing rate was 0.001 throughout. Over the remaining epochs w moves
erratically between the IC and PC. The cubic rule was used with the

following orthogonal mixing matrix: M =
[ −0.817 0.573

0.573 0.817

]

in F. An example (chosen from 4 studied) is shown in Fig. 8.
Here, we compare the weights obtained with all Gauss inputs
with those obtained with 2 Gaussian inputs and one Lapla-
cian, using the tanh nonlinearity at various crosstalk levels.
At a critical crosstalk level, the tanh weights suddenly shift
to match those obtained in the all Gauss case. With purely
Gaussian inputs, the weights change smoothly as crosstalk
increases. Note that in this case the PC corresponds quite
closely to weight equality, i.e., the principal eigenvector of
E, despite the use of an antiHebb rule. Of course, applying
error to the Hebbian term in this situation leads to a minor
PC. We also did normalization crosstalk experiments using a

cubic nonlinearity and a Hebbian rule; in this case, above the
error threshold rather than moving to the expected least PC of
EC, the weights moved to the second eigenvector. However,
because the data are well whitened, the 2 lesser eigenvalues
of EC are quite close.

3.7 Foldiak bars

The only situation in which Hebbian adjustment of a single
layer of feedforward connections can always find weights
that directly invert a real-world generative model is when that
model itself is linear mixing. In order to extend our results
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Fig. 7 Results with an exactly orthogonal M (n = 2), showing that
the PC can be stable even at very low error. Here, the IC is orthogonal
to the PC of E (i.e., equal weights). This corresponds to the central axis
of the “badge” shown in Fig. 1. The angle cosines between the weight
vector and either the PC of E (green) or the IC (blue) are plotted in the

le f tpanels (a, c) and the weights in the right (panels b, d). In panels
a and b, b was 0.02 throughout, and the weights stayed at the PC. In
panels c and d, b was zero throughout, and the weights shift to the IC
(color figure online)

beyond the standard ICA framework, we also studied the
effect of crosstalk in a popular nonlinear ICA model, Foldiak
bars (Foldiak 1990; Triesch 2007). In this model, input vec-
tors (dimensionality N 2) are generated as concatenations of
combinations of variable numbers of vertical and/or hori-
zontal “bars” at N possible vertical and/or random locations.
When a bar is present, a pixel (input element) is set at 1, and
the background is set at 0 or −1. Bar intersections are also set
at 1. We studied 2 versions of this model: the standard case,
where the number of bars is random (bar probability = p),
and a simpler “2-bar” case, where 2 bars are always present
(see Sect. 2). The input vectors derived from such “bars”
images can be preprocessed in a variety of ways (centering,
length normalization and whitening). For simplicity, and for

comparison with our ICA experiments, we used a fixed cubic
nonlinearity. The dynamical behavior of Hebbian learning
in such protocols can be quite varied and complicated and
depends on both SoCs and HoCs (Elliott, personal commu-
nication). We studied 2 protocols which, in the absence of
crosstalk, reliably converged to a set of weights that repre-
sent a single bar (an “independent component” of the input
images); the actual bar found depended on the randomly cho-
sen starting weights.

In Fig. 9, we used a standard, 0,1 centered, normalized,
but unwhite protocol (N = 10, 100 inputs, p = 0.1). After
a bar was quickly and reliably learned, crosstalk was grad-
ually increased. The bar persisted until crosstalk reached a
level of b = 0.06, when the bar first became rather noisy and
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Fig. 8 The symbols (with standard deviation bars) and the associ-
ated colored lines show data obtained with a tanh nonlinearity and
an antiHebb rule, at various normalization crosstalk levels, using one
Laplacian source. The lines without symbols show data for the same
Mo (seed 30) but all Gauss sources. N = 3, k = 0.002, OF = 0.0231,
batch = 10,000. Weights show a sudden shift to equality in the LGG case,
but move gradually to equality in the GGG case (color figure online)

then abruptly disappeared as the weights equalized. It should
be noted that if the weights were started exactly equal, they
remained so even in the absence of crosstalk. Therefore, we
could not test whether there was a second, “lower” threshold
which below which a bar cannot be learned when starting
from equal weights. However, this equal weight fixed point
seems to have a very small basin of attraction. Similar results
were obtained with N = 6 inputs. Increasing the bar proba-
bility produced a decrease in the crosstalk threshold.

A similar result, but with an even lower threshold (b =
0.02) was obtained using a 2-bar, uncentered unwhitened
protocol (n = 6).

4 Discussion

4.1 Summary of new results

Activity-dependent synaptic plasticity plays a central role in
theoretical neuroscience and connectionist models of learn-
ing. Recent evidence suggests that such adjustments are
not completely connection specific (Engert and Bonhoef-
fer 1997; Harvey and Svoboda 2007). In previous work,
we incorporated such inspecificity, quantified by a crosstalk
matrix E, into simple standard models of Hebbian learning
(Adams and Cox 2002a; Radulescu et al. 2009; Cox and
Adams 2009). We reported that while minor crosstalk typ-
ically only modestly affects linear Hebbian learning, it can
have catastrophic effects on nonlinear learning. In particular,
we reported that in a 1-neuron ICA model using only one non-
Gaussian source low levels of crosstalk could completely pre-

vent useful learning (Cox and Adams 2009). A recent analy-
sis (Elliott 2012) of this model for the special case of orthog-
onal mixing confirmed and expanded this finding. Here, we
present numerical experiments which further extend and clar-
ify these previous results. Most importantly, we show that
even when mixing is only approximately orthogonal, ICA
learning is usually possible, unless crosstalk reaches a criti-
cal value, and that when it fails, the weight vector converges
instead very close to the direction expected if the sources are
all Gaussian (Figs. 2, 4), and therefore, the inputs possess
no higher-order cumulants. Thus, crosstalk can make non-
linear Hebbian learning almost blind to HoCs. In particular,
we show that above a critical crosstalk threshold, the weights
align with an eigenvector of EC (Fig. 4). Furthermore, we
find this outcome not only with the cubic nonlinearity ana-
lyzed by Elliott, but also with a tanh nonlinearity. In this
case, competition between HoC and SoC terms also controls
the dynamics [see Eq. (8)], though the associated scalars are
more complicated. We also show that the bistability revealed
by Elliott’s analysis in the orthogonal case also occurs for
the nonorthogonal case. Our new numerical results accord
qualitatively with the similarity between the averaged learn-
ing equations for the orthogonal case [Eq. (8), analyzed by
Elliott] and the nonorthogonal case [Eq. (9)], although no
analysis of the latter is currently available. We also show that
normalization crosstalk is equivalent to Hebbian crosstalk
(Fig. 8) and that crosstalk causes catastrophic failure in a
nonlinear ICA problem (Fig. 9).

4.2 Comparison with Elliott

Our data suggest a close similarity between the effects of
crosstalk in the specific orthogonal mixing case (Elliott 2012)
and the more general nonorthogonal case, as expected from
a comparison of Eqs. (8) and (9). In particular, even in the
absence of crosstalk, spherical normalization no longer can-
cels growth in the w direction when there are input SoCs,
which if strong enough completely dominate learning. How-
ever, with adequate though incomplete whitening HoCs dom-
inate learning unless crosstalk exceeds critical values, just as
seen in the orthogonal case. Our data show that there are 2
critical values, as in the orthogonal case. Above a critical
value, ec2, IC learning is impossible for all initial weights.
Below that value, but above a second, lower critical value
ec1, IC learning is only possible if the weights happen to
start close to the IC. Only below ec1 is good IC learning
almost always possible. Elliott showed that in the orthogonal
case, ec1 approaches zero when the relevant column of M is
orthogonal to the PC of E. Our “colored” results suggest that
ec1 can be very low, but we have not explored the conditions
under which it might approach zero. Since a random direction
in n-dimensional space lies on average increasingly orthog-
onal to a reference direction (such as the PC of E or of EC)
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Fig. 9 Foldiak Bars. Standard protocol inputs were used with a cubic,
normalized learning rule, learning rate of 0.00005. The top plot shows
the complete run of 800,000 epochs with w starting from random
weights. After converging to a bar at zero error, error of 0.01 was applied
at 100,000 epochs, 0.02 at 200,000 epochs and so on until 600,000
epochs where at an error value of 0.06 w collapses down to the all equal

weight vector. Snapshots of the weight vector converted to a gray-scale
image (−0.1 = black, 0.31white) are shown at the end of each block
of 100,000 epochs. The inset on the bottom left is a close-up of the
initial convergence of w to a bar at zero crosstalk, with snapshots of w
as indicated. On the bottom right is a close-up of the collapse to equal
weights with b = 0.06, again with snapshots of w at various points

as n grows, these results strongly suggest that the effect of
crosstalk on learning from HoCs would become increasingly
toxic as the number of inputs to a neuron increases. Since neu-
rons can receive thousands of inputs, these results raise the
possibility that even extremely low levels of crosstalk could
prevent systematic learning from HoCs in the brain.

4.3 Significance

We have only explored the effect of crosstalk in particu-
larly simple models. Indeed, the 1-unit ICA model with all

but one sources set to Gaussian distributions is probably
the simplest nontrivial Hebbian learning model. Simplic-
ity confers robustness. For example, columns of orthogonal
Ms corresponding to nonGaussian sources are always sta-
ble fixed point of an appropriately signed completely accu-
rate normalized nonlinear Hebbian rule, regardless of the
form of the nonlinearity (Hyvarinen et al. 2001). But our
results show that low levels of crosstalk often prevent such
learning, and in particular, Elliott shows that any degree of
crosstalk, however, small, can prevent learning when the col-
umn of M corresponding to a single nonGauss is orthogonal
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to the PC of E. For the large number of inputs typical of
real neurons, even near-zero crosstalk could usually be fatal
to HoC-driven learning . It has been argued (Sabatini et al.
2002) that only 1–10 % of the NMDAR-dependent calcium
increase that underlies classical forms of Hebbian plasticity
escapes from a synaptic spine, and that this would be “neg-
ligible.” However, at least in the ICA model, any nonzero
escape could be catastrophic. This model shows an error
threshold reminiscent of that seen in the Eigen molecular
evolution model (Eigen 1971a), for much the same reason:
The elementary machinery underlying self-organization fails
catastrophically when subject to noise, and the critical noise
level approaches zero as the dimensionality increases.

Could these robust simple models be misleading? One
obvious possibility is that there exist simple crosstalk-
resistant Hebbian ICA rules, for which averaging over inputs
removes the contaminating “SoC” term in Eq. (9). For exam-
ple, the rules we used work by maximizing approximations
to negentropy, but a kurtosis maximization rule contains an
additional negative weight-dependent term (e.g., Hyvarinen
et al. 2001, Eq 8.13), which on averaging over inputs exactly
cancels the weight dependent “SoC” component inside the
brackets in Eq. (8) or Eq. (9). However, this rule is more com-
plicated, and it could be difficult to biologically implement
the required readout of individual weights to sufficient accu-
racy. Implementing crosstalk-resistant rules might always
require extremely accurate neural machinery (e.g., specific
nonlinearities) to overcome Hebbian inaccuracies.

Real inputs are unlikely to be generated by linear square
mixing, but having neurons that use nonlinear Hebbian rules
to provide sensitivity to HoCs to learn weights that confer
desirable statistical properties, such as output nonGaussian-
ity or independence, could be a useful component of a general
strategy. Indeed, it has been suggested (Friedman 1987; Chen
and Gopinath 2000; Shan et al. 2007; Hyvärinen 2013) that
repeated ICA, coupled with suitable pre- and postprocessing
so the overall transform is nonlinear, could be such a strat-
egy. Examples of appropriate processing, which could be
done in separate cortical layers from the ICA-like transform,
would be whitening, pooling and divisive normalization. Our
results suggest that the nonlinear Hebbian learning required
for the ICA-like step should be particularly accurate. This
raises the possibility that certain brain structures, for exam-
ple the neocortex, might be specialized for learning from
HoCs using nonlinear Hebbian rules because they possess
dedicated crosstalk reduction machinery. One simple way
to reduce crosstalk would be to lengthen or constrict spine
necks, but recent evidence suggests that they are already at the
limit required for good electrical coupling (Palmer and Stuart
2009). Another direct way would be to separate synapses, and
it is interesting that the thalamocortical synapses responsible
for the main receptive field properties of cortical neurons are
rather sparse (Banitt et al. 2007; Da Costa and Martin 2011).

This sparsity entails that thalamic input must be amplified,
and from this point of view, recurrent amplification (Somers
et al. 1995) could be viewed as a crosstalk reduction strategy.

We have proposed (Adams and Cox 2002a, 2006; Cox
and Adams 2012) that additionally much cortical circuitry,
involving layer 6 corticothalamic (CT) neurons, might per-
form a type of “Hebbian proofreading” operation. In this pic-
ture, input–output spike pairing would be detected both by a
thalamocortical (TC) layer 4 synapse and by a corresponding
layer 6 CT cell, which would get input from branches of the
thalamic and layer 4 cell axons and act as a coincidence detec-
tor. The TC-4 synapse would store the detected coincidence
as a “draft” trace which would only be finalized if the cor-
responding CT cell provides confirmation that a coincidence
occurred at the synapse. The confirmation would be delivered
specifically to the relevant synapses via axon branches to both
the relevant thalamic relay (which would enter burst mode)
and the appropriate layer 4 cell. While the required circuits
and physiology have all been observed, this proposal must be
regarded as speculation inspired by analogy with the mecha-
nism underlying accurate DNA replication and evolutionary
learning. Proofreading circuitry might allow the neocortex to
systematically learn complex models of the world.
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