A medical miracle was the news conference held at Stony Brook University Hospital four days after the successful operation, where reporters and camera crews of local and national news media had gathered to cover this miraculous story. Dr. Dagum said about the operation, “To take something that literally is dead, and all of a sudden, to see life in it again is very gratifying.”

Mr. Matias himself, his arms wrapped in surgical dressing as thick as pillows, was at the news conference, and in response to the question about how he was feeling, he just smiled and said, “Perfect, perfect—I never have pain. This is unbelievable.” And then, about the surgeons who took care of him, he said, “These doctors are the best in the world.”

In late March, almost four weeks to the day of his accident, Mr. Matias was able to leave the hospital and go home. Soon after he started his physical therapy. He faces about a year of recovery.

The simultaneous reattachment of hands is so rare that, historically, only one to two reattachments every year in contrast to the state-of-the-art care of the physicians at Stony Brook Island, where surgeons have the ability—the necessary expertise in reconstructive microsurgery—to reattach severed limbs. Our seemingly miraculous ability in this area of emergency care is among the many reasons why Stony Brook is the designated Level I Trauma Center serving our region.

At Stony Brook University Hospital, our medical professionals are proud of the historic success of our surgeons. This success reflects the amazing ability of their surgical expertise and their multidisciplinary teamwork. But more than that, it also represents the success of nearly 100 other hospital staff members who provided them with the support they needed in and out of the operating room, as well as the success of the county’s rescue team and the quick-thinking coworkers who, together, helped us beat the clock to save one man—one very grateful man today.

Mr. Matias himself, his arms wrapped in surgical dressing as thick as pillows, was at the news conference, and in response to the question about how he was feeling, he just smiled and said, “Perfect, perfect—I never have pain. This is unbelievable.” And then, about the surgeons who took care of him, he said, “These doctors are the best in the world.”

In late March, almost four weeks to the day of his accident, Mr. Matias was able to leave the hospital and go home. Soon after he started his physical therapy. He faces about a year of recovery.

The simultaneous reattachment of hands is so rare that, historically, only one to two reattachments every year in contrast to the state-of-the-art care of the physicians at Stony Brook Island, where surgeons have the ability—the necessary expertise in reconstructive microsurgery—to reattach severed limbs. Our seemingly miraculous ability in this area of emergency care is among the many reasons why Stony Brook is the designated Level I Trauma Center serving our region.

At Stony Brook University Hospital, our medical professionals are proud of the historic success of our surgeons. This success reflects the amazing ability of their surgical expertise and their multidisciplinary teamwork. But more than that, it also represents the success of nearly 100 other hospital staff members who provided them with the support they needed in and out of the operating room, as well as the success of the county’s rescue team and the quick-thinking coworkers who, together, helped us beat the clock to save one man—one very grateful man today.

A MEDICAL MIRACLE

A medical miracle was the news conference held at Stony Brook University Hospital four days after the successful operation, where reporters and camera crews of local and national news media had gathered to cover this miraculous story. Dr. Dagum said about the operation, “To take something that literally is dead, and all of a sudden, to see life in it again is very gratifying.”

Mr. Matias himself, his arms wrapped in surgical dressing as thick as pillows, was at the news conference, and in response to the question about how he was feeling, he just smiled and said, “Perfect, perfect—I never have pain. This is unbelievable.” And then, about the surgeons who took care of him, he said, “These doctors are the best in the world.”

In late March, almost four weeks to the day of his accident, Mr. Matias was able to leave the hospital and go home. Soon after he started his physical therapy. He faces about a year of recovery.

The simultaneous reattachment of hands is so rare that, historically, only one to two reattachments every year in contrast to the state-of-the-art care of the physicians at Stony Brook Island, where surgeons have the ability—the necessary expertise in reconstructive microsurgery—to reattach severed limbs. Our seemingly miraculous ability in this area of emergency care is among the many reasons why Stony Brook is the designated Level I Trauma Center serving our region.

At Stony Brook University Hospital, our medical professionals are proud of the historic success of our surgeons. This success reflects the amazing ability of their surgical expertise and their multidisciplinary teamwork. But more than that, it also represents the success of nearly 100 other hospital staff members who provided them with the support they needed in and out of the operating room, as well as the success of the county’s rescue team and the quick-thinking coworkers who, together, helped us beat the clock to save one man—one very grateful man today.

The clock started ticking at around 9 o’clock on the morning of the last day of February, as soon as Arsenio Matian had a terrible accident at his factory job in Bay Shore, NY. At the moment he looked down to see blood flowing from his wrists and both of his hands lying on the floor beside the machine he had been operating, the 49-year-old man thought he was going to die.

But thanks to the first-aid of his coworkers and, ultimately, to the state-of-the-art care of the physicians at Stony Brook University Hospital, he didn’t die. Not only that—as a miracle—his hands were successfully reattached in a history-making operation led by Alexander B. Dagum, MD, associate professor of surgery and chief of plastic and reconstructive surgery.

As Arsenio Matian had a terrible accident at his factory job in Bay Shore, NY. At the moment he looked down to see blood flowing from his wrists and both of his hands lying on the floor beside the machine he had been operating, the 49-year-old man thought he was going to die.

But thanks to the first-aid of his coworkers and, ultimately, to the state-of-the-art care of the physicians at Stony Brook University Hospital, he didn’t die. Not only that—as a miracle—his hands were successfully reattached in a history-making operation led by Alexander B. Dagum, MD, associate professor of surgery and chief of plastic and reconstructive surgery.

As Arsenio Matian had a terrible accident at his factory job in Bay Shore, NY. At the moment he looked down to see blood flowing from his wrists and both of his hands lying on the floor beside the machine he had been operating, the 49-year-old man thought he was going to die.

But thanks to the first-aid of his coworkers and, ultimately, to the state-of-the-art care of the physicians at Stony Brook University Hospital, he didn’t die. Not only that—as a miracle—his hands were successfully reattached in a history-making operation led by Alexander B. Dagum, MD, associate professor of surgery and chief of plastic and reconstructive surgery.
Mr. Matias entered our emergency room just over an hour after the accident took place. At that point, he had lost almost 40% of his blood, nine pints in all. Our trauma team—led by Marc J. Shapiro, MD, professor of surgery and anesthesiology, and chief of general surgery, trauma, surgical critical care, and burn—successfully stabilized the patient whose injuries were nothing less than devastating.

At around 11:30 a.m. Kenneth J. Rosenfeld, MD, associate professor of anesthesiology and vice chairman for clinical affairs, brough the patient to the operating room. Another anesthesiologist, John A. Pirone, MD, assistant professor of anesthesiology, came to help with the preparations needed to ready the patient for surgery. Grappling with time, they placed the patient on monitoring lines and further stabilized him. Then, they called 911 to bring the scene the Suffolk County Police Department. Dr. Rosenfeld immediately notified University Hospital—over 18 miles away.

Soon after the accident took place, one coworker put him in a chair and told him to raise his arms over his head to slow the bleeding. Two other coworkers tied their belts around his arms to further stem the bleeding. Other workers ran there to get some ice for his hands. They then called to bring the helicopter that quickly airlifted him to University Hospital.

On arrival, there were multiple injuries to the patient's hands and arms, including amputation of both arms in the midsection. The two upper arms were hemmed in both hands, and blood vessels, nerves, and bone were severed.

Performing Reconstructive Microsurgery

Our clinical program in reconstructive microsurgery is one of the foci of care for some of the most clinically vexing problems that, until recently, were virtually unsolvable. Microsurgery involves magnifying the visual field of surgeons to enable them to see, better, dissect, and perform micro-manipulation. This magnification helps them to perform very precise surgery that was not possible in the past.

The greatest impact of microsurgery has been in our ability to save small blood vessels and nerves, thus making it possible to replant—limbs severed from the body, as well as in transplant tissues from one part of the body to another.

Microsurgical techniques greatly enhance the reconstructive surgeon's armamentarium for dealing with a multitude of complex problems. By reestablishing blood flow into and out of muscle tissue, skin, bone, or even a portion of small intestine, the plastic surgeon so trained is able to perform seemingly miraculous operations—like the one in which the severed hands of Arsenio Matias were successfully reattached.

All four of our plastic surgeons—as well as other specialists in head and neck surgeons on our faculty—have expertise in reconstructive microsurgery for which they completed advanced training, and their skills enable them to perform all kinds of new operations that seem miraculous.

Plastic surgeons learned that they could sever the blood vessels supplying a chosen donor tissue, and transfer it to a “distant” site where it was needed to solve a reconstructive problem. This new modality allowed many previous-stage procedures obsolete, and in many instances provided reconstructive options where none before existed.

Although a relatively new form of surgery, reconstructive microsurgery is now widely accepted. Over the last three decades more than 100 donor “flaps”—patches of tissue completely severed from their place of origin that are transplanted to a new site to recreate an original defect—have been described, and a nationwide microsurgical practice has rapidly grown to a level that had been virtually unsolvable.

NEW POSSIBILITIES FOR THERAPY

Reconstructive microsurgery offers a wide range of therapeutic possibilities. Injuries to limbs that previously could only be treated by amputation can now be successfully treated, and the limbs reconstructed with functional results.

Cancers resulting in the loss of a portion of the esophagus can now be reconstructed with transplantation of a portion of the patient's own small intestine. Even reconstruction of the breast can be enhanced with microsurgical techniques.

Limb loss can be reconstructed with toe-to-hand transfers, even after loss of their arms and legs.

Our program in reconstructive microsurgery offers patients the most sophisticated care available for:

- Reattachment of acutely severed body parts
- Soft-tissue trauma of the arms and legs
- Reconstruction after limb-sparing tumor removal
- Cancers involving the head and neck
- Burns of the cervical esophagus
- Malignant ulcer of the esophagus
- Severe burn scar contracture of the hand
- Limb salvage in patients with peripheral vascular disease
- Management of difficult wounds
- Vascular and vasoplastic disorders of the hand, including Raynaud's disease
- Nerve injuries in the arms and legs

Our colleagues in the Department of Orthopaedics—Stony Brook Orthopaedic Associates, PC—also perform reconstructive microsurgery for replantation of severed fingers and limbs, as well as for other kinds of operations.
Mr. Matias entered our emergency room just over an hour after the accident took place. At that point, he had lost almost 40% of his blood, nine pints in all. Our trauma team—led by M. Shapin, MD, professor of surgery and anesthesiology, and chief of general surgery, trauma, surgical affairs, brought the patient who was still awake to the operating room. At around 10:30 a.m. Kenneth I. Rosenfeld, MD, associate professor of anesthesiology, and chief of general surgery, trauma, surgical affairs, brought the patient who was still awake to the operating room. Another anesthesiologist, John A. Pimentel, MD, associate professor of anesthesiology, came to help with the preparations needed to ready the patient for surgery. Then the patient was placed on the operating table and intubated and monitoring lines and further stabilized by the anesthesiologists, the emergency team. Dr. Dagum soon arrived to start the operation. He immediately went to work to correct the damage resulting from the accident and then commenced preparing the parts of the patient’s hands and arms for surgery.

“This was one of the greatest challenges of my career,” says Dr. Dagum, who has been doing replantation for 12 years.

Dr. Dagum, the lead surgeon of the operation, was then joined by three other hand surgeons: Balvan P. Avila, MD, assistant professor of plastic and reconstructive surgery; Lawrence C. Hurst, MD, professor and chairman of hand surgery and chief of hand surgery; and Steven P. Sampson, MD, associate professor and chairman of orthopaedic surgery. Dr. Dagum worked closely together with Dr. Avila. They focused their attention on the patient’s left hand, while Dr. Hurst and Sampson worked together on the right. Neera Tewari, MD, assistant professor of anesthesiology, arrived to take over for Dr. Peric in the management of the anesthetics. Those orthopaedic surgeons assisted residents providing advice during the case.

Late in the operation, another hand surgery specialist, Edward D. Wang, MD, assistant professor of orthopaedic surgery, came to help by relaying Dr. Hurst, who had been working steadily for many hours.

By the ninth hour of the replantation procedure involving complex reconstructive microsurgery, the patient’s reattached hands began to take on their normal color, and the outcome of the surgery was clearly visible to the team in the operating room. Life had been restored to the two hands that earlier in the day were dead. The operation became a success—and the patient a lucky man.

All four of our plastic surgeons—as well as other surgeons in the head and neck surgeons on our faculty—have expertise in reconstructive microsurgery, for which they completed advanced training, and their skills enable them to perform all kinds of new operations that seem miraculous.

Performing Reconstructive Microsurgery

O ur clinical program in reconstructive microsurgery is one of the few of its kind for care of some of the most clinically vexing problems that, until recently, were virtually unsolvable.

Microsurgery involves magnifying the visual field of surgeons to enable them to see better, devise better, and perform micro-manipulation. This magnification helps them to perform very precise surgery that was not possible in the past.

The greatest impact of microsurgery has been in our ability to save small blood vessels and nerves, thus making it possible to replant—limbs severed from the body, as well as in transplant tissues from one part of the body to another.

Microsurgical techniques greatly enhance the reconstructive surgeon’s armamentarium for dealing with a multitude of complex injuries. By reestablishing blood flow into and out of muscle tissue, skin, bone, or even a part of small intestine, the plastic surgeon can perform seemingly miraculous operations—like the operation in which the several hands of Arsenio Matias were successfully reattached.

This new modality rendered many instances provided

Our program in reconstructive microsurgery offers patients the most sophisticated care available for:

- Reattachment of acutely severed body parts
- Soft-tissue trauma of the arms and legs
- Reconstruction after limb-sparing tumor removal
- Cancers involving the head and neck, especially the cervical esophagus, mandible and floor of the mouth
- Severe burn scar contractures of the hands
- Breast reconstruction
- Limb salvage in patients with peripheral vascular disease
- Management of difficult wounds
- Vascular and vasoplastic disorders of the hand, including Raynaud’s disease
- Nerve injuries in the arms and legs

Our colleagues in the Department of Orthopaedics—Stony Brook Orthopaedic Associates, PC—also perform reconstructive microsurgery for replantation of severed fingers and limbs, as well as for other kinds of operations.

During the course of the long operation, nearly 100 other hospital staff members provided the surgeons with the support they needed in and out of the operating room.

Dr. Alexander Dagum (left) describing the operation, with anesthesiologist Dr. Kenneth Rosenfeld and surgeon Dr. Steven Sampson.

overleaf: Dr. Alexander Dagum (left) describing the operation, with anesthesiologist Dr. Kenneth Rosenfeld and surgeon Dr. Steven Sampson.

The greatest impact of microsurgery has been in our ability to save small blood vessels and nerves, thus making it possible to replant—limbs severed from the body, as well as in transplant tissues from one part of the body to another.
Saving This Man’s Life Through Teamwork

It started out as an ordinary Monday. Mr. Matias was doing his job at a display-making factory, operating a machine that has parts to help him build plastic and then cut it to size. But suddenly his hands got caught in the machine and severed at the wrist—in all a split second.

Soon after the accident took place, one coworker put him in a nearby car to get some shots of his arm to show to the hospital. The other two coworkers tied their belts around his wrists and called someone to drive him to the hospital. The drive was about 18 miles away.

The Operation Itself

Mr. Matias entered our emergency room just over an hour after the accident took place. At that point, he had lost almost 40% of his blood, nine pints in all. Our trauma team—led by Maj. J. Shapin, MD, professor of surgery and anesthesiology, and chief of general surgery, trauma, surgical critical care, and burn—successfully stabilized the patient whose injuries were nothing less than devastating.

At around 3:30 a.m. Kenneth J. Rosenfeld, MD, associate professor of anesthesiology and vice chairman for clinical affairs, brough the patient who was still awake to the operating room. Another anesthesiologist, John A. Perez, MD, associate professor of anesthesiology, came to help with the preparations needed to ready the patient for surgery. Together, they placed him in a prone position, intubated him, and monitored his lines and further stabilized him to ensure his safety.

Dr. Dagum soon arrived to start the operation. He immediately went to work to connect him to the tunneling and then commenced preparing the parts of the patient’s hands and arms.

“This was one of the greatest challenges of my career,” says Dr. Dagum, who has been doing replantations for 12 years.

Dr. Dagum, the lead surgeon of the operation, was then joined by three other hand surgery specialists: Balvant P. Arora, MD, assistant professor of orthopedic and reconstructive surgery; Lawrence C. Hurst, MD, professor and chairman of orthopedic surgery and chief of hand surgery; and Steven P. Sampson, MD, associate professor and chairman of orthopedic surgery.

Dr. Dagum worked closely together with Dr. Arora. They focused their attention on the patient’s left hand, while Dr. Hurst and Sampson worked together on the right hand. Neera Tewari, MD, assistant professor of anesthesiology, arrived to take over for Dr. Perez in the management of the anesthesia. Those orthopaedic surgeons residing provided assistance during the case.

Late in the operation, another hand surgery specialist, Edward D. Wang, MD, assistant professor of orthopedic surgery, came to help by relaying Dr. Hurst, who had been working steadily for many hours.

By the ninth hour of the replantation procedure involving complex reconstructive microsurgery, the patient’s reattached hands began to take on their normal color, and the outcome of the operation was clear to the team in the operating room.

Life had been restored to the two hands that earlier in the day were dead. The operation was a total success—and the patient a lucky man.

Performing Reconstructive Microsurgery

Our clinical program in reconstructive microsurgery is based on the fact that for some of the most technically vexing problems that, until recently, were virtually unsolvable.

Microsurgery involves magnifying the visual field of surgeons to enable them to see better, dissect better, and perform micro-manipulation. This magnification helps them to perform very precise surgery that was not possible in the past.

The greatest impact of microsurgery has been in our ability to save small blood vessels and nerves, thus making it possible to replant—limbs severed from the body, as well as in transplant tissues from one part of the body to another.

Microsurgical techniques greatly enhance the reconstructive surgeon’s armamentarium for dealing with a multitude of complex situations. By reestablishing blood flow into and out of muscle tissue, skin, bone, or even a portion of small intestine, the plastic surgeon is trained to perform seemingly miraculous operations—like the one in which the several hands of Aron Matias were successfully reattached.

All four of our plastic surgeons—as well as others in our department and neck surgeons on our faculty—have expertise in reconstructive microsurgery for which they completed advanced training, and their skills enable them to perform all kinds of new operations that seemed miraculous.

Reconstructive microsurgery offers a wide range of therapeutic possibilities. Injuries to limbs that previously could only be treated by amputation can now be successfully treated and the limbs reconstructed with functional results.

Plastic surgeons learned that they could sever the blood vessels supplying a chosen donor tissue, and transfer it to a “distant” site where it was needed to solve a reconstructive problem. This new procedure altered many previous-stage procedures obstructive, and in many instances provided reconstructive options where none existed before. Although a relatively new form of medical specialty, reconstructive microsurgery is now widely accepted. Over the last three decades more than 100 donor—“flaps”—pieces of tissue comprising the severed from their place of origin that are transplanted to a new site to reconstruct a lost segment of the body—have been described, and a natural muscle that has been virtually unsolvable.

The increasing application of microsurgical techniques is currently being extended to other medical procedures and in-limb preservation surgery for tumor, trauma, reconstructive, congenital abnormalities, and organ transplant.

All told, the advent of microsurgical technique has been one of the most important developments in modern surgery, and it has made possible, rapid major advances in the field of plastic and reconstructive surgery.

Many previous multi-stage reconstructive procedures obsolete, and in many previous multi-stage reconstructive problems. It was needed to solve a new problem. The greatest of microsurgery has been the ability to save small blood vessels and nerves that were virtually unsolvable.

Our colleagues in the Department of Orthopaedics—Stony Brook Orthopaedists, PC—also perform reconstructive microsurgery for replantation of severed fingers and limbs, as well as for other kinds of operations.

Dr. Tewari.

Our program in reconstructive microsurgery offers patients the most sophisticated care available for:

- Reattachment of acutely severed body parts
- Soft-tissue trauma of the arms and legs
- Reconstruction after limb-sparing tumor removal
- Cancers involving the head and neck, the cervical esophagus, mandible and floor of the mouth
- Scarless breast reconstruction of the neck and shoulders
- Traumatic or congenital absence of digits, especially the thumb
- Breast reconstruction
- Limb salvage in patients with peripheral vascular disease
- Management of difficult wounds
- Vascular and vasoplastic disorders of the hand
- Management of difficult wounds
- Vascular and vasoplastic disorders of the hand
- Nerve injuries in the arms and legs

Our program in reconstructive microsurgery offers patients the most sophisticated care available for:

- Reattachment of acutely severed body parts
- Soft-tissue trauma of the arms and legs
- Reconstruction after limb-sparing tumor removal
- Cancers involving the head and neck, the cervical esophagus, mandible and floor of the mouth
- Scarless breast reconstruction of the neck and shoulders
- Traumatic or congenital absence of digits, especially the thumb
- Breast reconstruction
- Limb salvage in patients with peripheral vascular disease
- Management of difficult wounds
- Vascular and vasoplastic disorders of the hand
- Management of difficult wounds
- Vascular and vasoplastic disorders of the hand
- Nerve injuries in the arms and legs

Our program in reconstructive microsurgery offers patients the most sophisticated care available for:

- Reattachment of acutely severed body parts
- Soft-tissue trauma of the arms and legs
- Reconstruction after limb-sparing tumor removal
- Cancers involving the head and neck, the cervical esophagus, mandible and floor of the mouth
- Scarless breast reconstruction of the neck and shoulders
- Traumatic or congenital absence of digits, especially the thumb
- Breast reconstruction
- Limb salvage in patients with peripheral vascular disease
- Management of difficult wounds
- Vascular and vasoplastic disorders of the hand
- Management of difficult wounds
- Vascular and vasoplastic disorders of the hand
- Nerve injuries in the arms and legs

Plastic surgeons learned that they could sever the blood vessels supplying a chosen donor tissue, and transfer it to a “distant” site where it was needed to solve a reconstructive problem. This new procedure altered many previous-stage procedures obstructive, and in many instances provided reconstructive options where none existed before. Although a relatively new form of medical specialty, reconstructive microsurgery is now widely accepted. Over the last three decades more than 100 donor—“flaps”—pieces of tissue comprising the severed from their place of origin that are transplanted to a new site to reconstruct a lost segment of the body—have been described, and a natural muscle that has been virtually unsolvable.
A MEDICAL MIRACLE

At the news conference held at Stony Brook University Hospital four days after the successful operation, where reporters and camera crews of local and national news media had gathered to cover this miraculous story, Dr. Dagum said about the operation, “To take something that literally is dead, and all of a sudden, to see life in it again is very gratifying.”

Mr. Matias himself, his arms wrapped in surgical dressing as thick as pillows, was at the news conference, and in response to the question about how he was feeling, he just smiled and said, “Perfect, perfect—I never have pain. This is unbelievable.” And then, about the surgeons who took care of him, he said, “These doctors are the best in the world.”

In late March, almost four weeks to the day of his accident, Mr. Matias was able to leave the hospital and go home. Soon after he started his physical therapy. He faces a year of rehabilitation, including exercises to regain strength in his hands and increase his range of motion. According to Dr. Dagum, he should regain 90% of the motion of his hands and 50% of the feeling. Although that prognosis may sound alarming, the outcome is still good, considering how much damage had been done in the accident.

All of us at University Hospital are proud of the historic success of our surgeons. This success reflects the amazing ability of their surgical expertise and their multidisciplinary teamwork.

But more than that, it also represents the success of nearly 100 other hospital staff members who provided them with the support they needed in- and out-side the operating room, as well as the success of the country’s rescue team and the quick-thinking cowokers who, together, helped us the clock tosave one man—one very grateful man today.

T he clock started ticking at around 9 o’clock in the morning on the last day of February, as soon as an Armoni Matian had a terrible accident at his factory job in Bay Shore, NY. At the moment he looked down to see blood gushing from his wrists and both of his hands lying on the floor beside the machine he had been operating, the 49-year-old man thought he was going to die.

But thanks to the first-aid of his coworkers and, ultimately, to the state-of-the-art care of the physicians at Stony Brook University Hospital, he didn’t die. Not only that—as a miracle—his hands were successfully reattached in a history-making operation led by Alexander B. Dagum, MD, associate professor of surgery and chief of plastic and reconstructive surgery.

The simultaneous reattachment of both hands is so rare that, in contrast to one hand-surgery operation about one every two to three years.

The simultaneous reattachment of both hands is so rare that, in contrast to one hand-surgery operation about one every two to three years.
Performing a Medical Miracle
With Multidisciplinary Surgery
Making Surgical History
And Newsworthy News

The clock started ticking at around 9 o’clock in the morning on the last day of February, as soon as Arsenio Matias had a terrible accident at his factory in Bay Shore, NY. At the moment he looked down to see blood gushing from his wrists and both of his hands lying on the floor beside the machine he had been operating, the 49-year-old man thought he was going to die.

But thanks to the first-aid of his coworkers and, ultimately, to the state-of-the-art care of the physicians at Stony Brook University Hospital, he didn’t die. Not only that—as a miracle—his hands were successfully reattached in a history-making operation led by Alexander B. Dagum, MD, associate professor of surgery and chief of plastic and reconstructive surgery.

Performing the operation was a major factor in the happy outcome of this dramatic multidisciplinary operation. It was conducted in only 11 hours to complete. A detached hand, placed in an ice-slurry, has just 12 hours before it can no longer be placed in an ice-slurry, has just 12 hours before it can no longer be.

Our surgeons performed what is believed to be the first simultaneous reattachment of hands done in New York State.

Stony Brook University Hospital is one of just two reattachment centers in the downstate region of New York and the only one on Long Island. Dr. Dagum says of the surgeons in reconstructive microsurgery—we reattached several limbs. Our seemingly miraculous ability in this area of emergency care is among the many reasons why Stony Brook is the designated Level I Trauma Center serving our region.

Finger amputations are a common injury but complex hand amputations are rare. Stony Brook surgeons perform a multitude of finger reattachment every year in contrast to one single-hand reattachment operation about every one to two years.

The simultaneous reattachment of both hands is so rare that, according to the present study, Dr. Dagum says that he is only aware of one other such operation, which took place in China.

Stony Brook University Hospital is the best place in the world for the treatment of injuries and diseases of the head, neck, chest, abdomen, and extremities. The State University of New York at Stony Brook is an equal opportunity/affirmative action educator and employer. This publication can be made available in an alternative format upon request.