Complement-fixing Activity of Fulvic Acid from Shilajit and Other Natural Sources

Igor A. Schepetkin, Gang Xie, Mark A. Jutila and Mark T. Quinn*
Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA

Shilajit has been traditionally used in folk medicine for the treatment of a variety of disorders, including syndromes involving excessive complement activation. Extracts of Shilajit contain significant amounts of fulvic acid (FA), and it has been suggested that FA is responsible for many therapeutic properties of Shilajit. However, little is known regarding the physical and chemical properties of Shilajit extracts, and nothing is known about their effects on the complement system. To address this issue, extracts of commercial Shilajit were fractionated using anion exchange and size-exclusion chromatography. One neutral (S-I) and two acidic (S-II and S-III) fractions were isolated, characterized and compared with standardized FA samples. The most abundant fraction (S-II) was further fractionated into three sub-fractions (S-II-1 to S-II-3). The van Krevelen diagram showed that the Shilajit fractions are the products of polysaccharide degradation, and all fractions, except S-II-3, contained type II arabinogalactan. All Shilajit fractions exhibited dose-dependent complement-fixing activity in vitro with high potency. Furthermore, a strong correlation was found between the complement-fixing activity and carboxylic group content in the Shilajit fractions and other FA sources. These data provide a molecular basis to explain at least part of the beneficial therapeutic properties of Shilajit and other humic extracts. Copyright © 2008 John Wiley & Sons, Ltd.

Keywords: Shilajit; humic substances; fulvic acid; complement-fixing activity; carbohydrates.

INTRODUCTION

Over the past three decades, research on the medicinal properties of natural products has increased significantly, and a large body of evidence suggests that extracts from peat, sapropel and shilajit humus may represent a source of novel compounds with medicinal properties (reviewed in Schepetkin et al., 2002). Shilajit (common names: mumie, vegetable asphalt, mineral pitch) is a semi-hard brownish black resin formed through long-term humification of several plant types, mainly bryophytes, present in the vicinity of shilajit-exuding rocks (Ghosal et al., 1991b; Agarwal et al., 2007). Shilajit is found in specific mountain regions of the world at altitudes between 0.6 and 5 km (Ghosal et al., 1991b; Agarwal et al., 2007), and has been used therapeutically for centuries as part of traditional systems of medicine in many countries (reviewed in Schepetkin et al., 2002; Agarwal et al., 2007). For example, Shilajit has been used as a treatment for genitourinary diseases, diabetes, digestive disorders, nervous diseases, tuberculosis, chronic bronchitis, asthma, anemia, eczema, bone fractures and other diseases (Acharya et al., 1988; Goel et al., 1990).

Although Shilajit samples from different regions of the world have similar physical properties and qualitative chemical composition, they differ in the ratio of individual components (Galimov et al., 1986). Shilajit humus consists of organic matter (60–80%), mineral matter (20–40%) and ~5% trace elements (Ghosal et al., 1991a; Frolova and Kiseleva, 1996). For therapeutic applications, Shilajit has been used in the form of an aqueous extract, and extracts of Shilajit have been shown to activate phagocytosis and cytokine release by murine peritoneal macrophages (Bhaumik et al., 1993), stimulate osteoblastic differentiation of mesenchymal stem cells (Jung et al., 2002). Shilajit extracts have also been shown to induce the proliferation of lymphocytes in the cortical thymus layer and increased migration of these cells into thymus-dependent zones of the lymph nodes and spleen (Agzamov et al., 1988).

The primary organic substance in aqueous extracts of Shilajit humus is fulvic acid (FA), and it has been suggested that FA may account for many biological and medicinal properties of Shilajit (Ghosal et al., 1988; Schepetkin et al., 2002). Indeed, FA has been used externally to treat hematomata, phlebitis, desmorrhesis, myoglobinosis, arthrosis, polyarthritis, osteoarthritis and osteochondrosis. Likewise, FA has been taken orally as a therapy for gastritis, diarrhea, stomach ulcers, dysentery, colitis and diabetes mellitus (reviewed in Schepetkin et al., 2002; Agarwal et al., 2007). Despite the broad spectrum use of FA for a variety of medical conditions, far less is known regarding the mechanisms of action of FA. The few reports available have shown that humic substances can stimulate osteoclastic resorption of transplanted bones as well as hydroxyapatite (Schlickewei et al., 1993) and FA/humic substances...
isolated from soil and water reservoirs have been reported to stimulate neutrophil and lymphocyte immune function (Joone et al., 2003; Schepetkin et al., 2003).

Since the complement system is involved in many disease syndromes that have been traditionally been treated with extracts of Shilajit and other humic substances containing high levels of FA (e.g. arthritis (Mizuno, 2006), asthma (Wills-Karp, 2007), eczema (Ferguson and Salinas, 1984) and vascular disease (Acosta et al., 2004), it was hypothesized that part of the beneficial effects of these natural products might relate to their ability to modulate complement. However, very little is known regarding the effects of FA/humic substances on the complement system in vitro or in vivo. Thus, studies were performed to fractionate and characterize the physiochemical properties of humic substances extracted from Shilajit and then their complement-fixing activity was examined in comparison with standard FA samples obtained from the International Humic Substances Society (IHSS).

MATERIALS AND METHODS

Reagents. β-Glucosyl Yariv reagent [1,3,5-tri-(4-β-d-glucosopyranosylxylophenyl-azo)-2,4,6-trihydroxybenzene] was purchased from Biosupplies Australia (Parkville, Australia). Gum arabic was purchased from Fluka BioChemica (Buchs, Switzerland). Cetyltrimethylammonium bromide (CTAB), diethylyaminoethyl (DEAE) cellulose, Sephadex G-50, galacturonic acid, galactose, arabinose, rhamnose, glucose, diphenylamine, aniline, anthranthrene, thiourea, trifluorocetic acid (TFA) and lipoarabinose, rhamnose, glucose, diphenylamine, aniline, anthranthrene, thiourea, trifluorocetic acid (TFA) and lipopolysaccharide (LPS) from *Escherichia coli* K-235, o-phenylene diamine, antibody-sensitized sheep erythrocytes and gelatin veronal buffer (GVB) were purchased from Sigma Chemical Co. (St Louis, MO). Heparin sodium salt from bovine lung was purchased from Calbiochem (San Diego, CA). The following fulvic acid (FA) standards were purchased from IHSS: Suwannee river FA (SRFA; IHSS code, 1S101F), Nordic Aquatic FA (NAFA; IHSS code, 1R105F), Florida (Pahokee) Peat FA (PLFA; IHSS code, 1R109F) and Waskish Peat FA (WPFA; IHSS code, 1R107F).

Fractionation of Shilajit humus. Crude Shilajit was obtained from Agada Herbs (St Joseph, MI). This product is a water extract of the raw resinous substance (Shilajit humus), collected in the Himalaya mountains of Nepal. The Shilajit from this company has been used successfully for medicinal purposes for many years. The isolation of humic substances from Shilajit was performed using sequential precipitation by ethanol and suction at room temperature in 5 L of distilled H₂O, and any insoluble residue was separated from the supernatant by centrifugation. The supernatant was precipitated by the addition of a 4-fold volume of ethanol and sonicated overnight at 4 °C. The precipitate was pelleted by centrifugation, re-dissolved in distilled H₂O, sonicated and filtered through 0.2 μm membrane filters. The filtrate was concentrated in an Amicon concentrator with a 5 kDa cut-off polyethersulfone membrane. The concentrate was diluted by addition of a 10-fold volume of distilled H₂O and ultra-filtered again. This procedure was repeated at least four times to remove ethanol and H₂O-soluble low-molecular weight compounds.

One aliquot of the final concentrated filtrate was lyophilized to give a crude extract of Shilajit humic substances (designated as SHS), and the remainder of the extract was applied to a DEAE cellulose column (500 mL) equilibrated with 50 mM Tris-HCl, pH 7.0. The column was washed with 2 L of equilibration buffer to obtain the neutral, unbound fraction and then sequentially eluted with 2 L of equilibration buffer containing 2 mM NaCl and 2 L of 0.2 N NaOH. The fractions were filtered through 0.2 μm membrane filters, concentrated in an Amicon concentrator, and subjected to six rounds of dilution and concentration, as described above. The final concentrated filtrates were lyophilized to give three fractions, designated as S-I (neutral fraction, eluted by equilibration buffer), S-II (acid fraction eluted by 2 mM NaCl) and S-III (acid fraction eluted by 0.2 N NaOH).

Fraction S-II was further fractionated using size exclusion chromatography (SEC) on a Sephadex G-50 column (2.5 × 92 cm) equilibrated with 10 mM Tris-HCl buffer (pH 7.4) containing 150 mM NaCl at a flow rate of 22 mL/h. The elution profile was monitored by: (1) measuring absorbance at 254 nm; (2) measuring fluorescence (λ_{ex} = 340 nm; λ_{em} = 460 nm); and (3) determining carbohydrate content, as described below. The three fractions obtained, designated as S-II-1, S-II-2 and S-II-3, were pooled and concentrated using ultrafiltration (for fraction S-II-1 and fraction S-II-2) or ion exchange chromatography on a DEAE cellulose column, followed by elution with 0.2 N NaOH and ethanol precipitation (for fraction S-II-3). For analysis of biological activity, the fractions were diluted in Hank’s balanced salt solution (HBSS) to a concentration of 5 mg/mL and filtered through sterile 0.22 μm filters.

To evaluate the role of endotoxin, samples were applied to a column containing Detoxi-Gel Endotoxin Removing Gel (Pierce, St Louis, MO) and eluted with 0.05 M phosphate buffer containing 0.5 M NaCl to decrease ionic interactions of sample molecules with the affinity ligand. The concentrations of eluted samples were adjusted using the absorbance at 254 nm, and the samples were analysed for biological activity, as described below.

High performance SEC (HP-SEC). The homogeneity and average molecular weight of the polysaccharide fractions were determined by HP-SEC using a Shimadzu Class VP HPLC and TSK-GEL G3000W_{xL} column (7.8 mm × 300 mm) eluted with 50 mM sodium citrate buffer, pH 7.5, containing 0.15 M NaCl and 0.01% Na₃N₂ at a flow rate of 0.3 mL/min. Peaks were detected using a refractive index (RID-10A) detector (Shimadzu, Torrance, CA). The molecular weights of the fractions were estimated by comparison with the retention times of pullulan standards (P-800, 400, 200, 100, 50, 20 and 10; Phenomenex, Torrance, CA) or polyethylene glycol standards (PEG-11000, 5000, 3600, 1000 and 600; Pressure Chemical Co., Pittsburg, PA).

Physical characterization of Shilajit fractions. For 1H-nuclear magnetic resonance (1H-NMR) analysis, samples (6 mg) were dissolved in 0.6 mM D₂O, filtered through
was determined with the formula: HIX = \(\frac{I_{435} - I_{345}}{I_{345}} \), where \(I \) is the fluorescence emission intensity with excitation at \(\lambda_{\text{ex}} = 254 \text{ nm} \) (Ohno, 2002). Since fluorescence intensity can be attenuated by the solution itself (i.e. inner-filtering effect), both primary and secondary fluorescence inner-filtering effects were corrected for in order to obtain an accurate measurement of the fluorescence emission intensity (Ohno, 2002). For calculation of HIX values corrected for inner-filter effects, linear extrapolation was performed on plots of HIX versus transmittance at 254 nm for 6–7 different concentrations of each fraction. The corrected HIX values correspond to infinite dilution (i.e. approximating 100% transmittance) (Ohno, 2002). Synchronous fluorescence spectra were recorded from 250 to 600 nm at a scan rate of 240 nm/min. The excitation–emission wavelength difference (\(\Delta \lambda \)) was 20 nm (Chen et al., 2002).

Chemical analysis of Shilajit fractions. For elemental analysis, lyophilized samples were submitted to Desert Analytics (Tucson, AZ) for analysis. Carbon, hydrogen, nitrogen, phosphorus, sulfur, halogens and metals were measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The oxygen content was taken as the difference from 100%.

The Bradford micro-protein assay was used to determine the protein content, with bovine serum albumin as the standard (BioRad, Hercules, CA).

The carbohydrate content was determined by the phenol–H\(_2\)SO\(_4\) method (Dubois et al., 1956), modified to a microplate format. Samples of 400 \(\mu \text{L} \) (500 \(\mu \text{g/mL} \)) were mixed with 200 \(\mu \text{L} \) 6% phenol solution and 1 mL concentrated H\(_2\)SO\(_4\). D-Glucose was used as the standard. The reactions were incubated for 20 min at room temperature, and the absorbance was measured at 488 nm.

The presence of arabinogalactan in the samples was detected by single radial gel diffusion in a 1% agarose gel containing 100 \(\mu \text{g/mL} \) \(\beta \)-glucosyl Yariv reagent, which selectively interacts with and precipitates compounds containing type II arabinogalactan structures (van Holst and Clarke, 1985). Four \(\mu \text{L} \) of each Shilajit fraction (10 mg/mL) was loaded into the wells, and the samples were incubated at room temperature for 24 h in a humid atmosphere. A positive reaction was identified by a reddish circle around the well, and arabic gum (4 mg/mL) served as a positive control.

CTABr, a cationic detergent, was used to analyse carboxylic acid groups in Shilajit fractions and standard FA (Denobili et al., 1990). Stock solution of the sample (1 mg/mL, pH 7.1) was added to different amounts of 0.1% CTABr to produce 20 different CTA/\(\text{sample} \) ratios. Suspensions were left standing for 18 h at 25 °C in the dark before centrifugation at 17 400 × g for 30 min. The absorbance was measured at 400 nm, and the number of carboxyl groups was determined to be at the minimum absorbance that coincided with quantitative precipitation with the same number of CTA\(^+\) ions.

For monosaccharide composition analysis, the samples were hydrolysed at 100 °C for 6 h with 3 M TFA, and the resulting samples were separated by thin-layer chromatography (TLC) on Whatman silica gel 60 plates with monosaccharide standards for reference (Dogsra et al., 2005). The TLC plates were developed with butanol/acetatic acid/water (3:1:1), and the bands were visualized by spraying the plates with aniline–diphenylamine reagent (2% aniline, 2% diphenylamine and 8.5% H\(_3\)PO\(_4\) acid in acetone) and heated at 100 °C for 10 min. Individual monosaccharide bands were scraped from the plate, extracted with H\(_2\)O and quantified using a colorimetric method with monosaccharide standards. Briefly, the extracts were mixed with anthrone reagent (0.2% anthrone and 1% thiourea in H\(_2\)SO\(_4\)). After heating at 100 °C for 10 min, the absorbance was measured at 620 nm.

Complement-fixing assay. The complement-fixing assay was performed as described (Diallo et al., 2001). Antibody-sensitized sheep erythrocytes were washed three times with GVB containing 0.5 mM Mg\(^{2+}\) and 0.15 mM Ca\(^{2+}\) (GVB\(^{2+}\)) before use. The erythrocytes were resuspended in GVB\(^{2+}\) at a concentration of 2 × 10\(^8\) cells/mL, and human serum was diluted with GVB\(^{2+}\) to a concentration giving about 50% hemolysis. Triplicate samples containing 50 \(\mu \text{L} \) of each serially diluted polysaccharide fraction were mixed with 50 \(\mu \text{L} \) diluted serum and added to microplate wells and incubated at 37 °C. After 30 min, sensitized sheep erythrocytes (50 \(\mu \text{L} \)) were added to each well, and the samples were incubated for an additional 30 min at 37 °C. After centrifugation (900 × g for 5 min), 50 \(\mu \text{L} \) of each supernatant was mixed with 200 \(\mu \text{L} \) distilled H\(_2\)O in flat-bottom microplates, and the absorbance was measured at 405 nm. 100% lysis was obtained by adding distilled H\(_2\)O to sensitized sheep erythrocytes. Samples containing GVB\(^{2+}\), serum and sensitized sheep erythrocytes were used as background controls (\(A_{\text{control}} \)), while heparin served as a positive control. Inhibition of hemolysis induced by the test samples was calculated by the formula: \(\frac{[A_{\text{control}} - A_{\text{sample}}]}{A_{\text{control}}} × 100% \). A dose–response curve (6–7 points) was constructed to calculate the concentration of test sample able to give 50% inhibition of hemolysis (ICH\(_{50}\)).

A low ICH\(_{50}\) means high complement fixing activity. Heparin, a highly sulfated glycosaminoglycan, was used as a positive control.

Statistical analysis. Linear regression analysis was performed on the indicated sets of data to obtain correlation coefficients, 95% confidence intervals and statistical significance (GraphPad Prism Software, San Diego, CA). Differences of \(p < 0.05 \) were considered to be statistically significant.
RESULTS AND DISCUSSION

Preparation and partial characterization of Shilajit humic substances

Shilajit humic substances (SHS) obtained from crude Shilajit humus were fractionated by ion exchange chromatography, resulting in one neutral fraction (S-I) and two acidic fractions (S-II and S-III). The size distribution of the molecules in these fractions and crude Shilajit humus was characterized by HP-SEC, and the elution profiles are shown in Fig. 1. Crude Shilajit humus eluted over a broad range of molecular weights, from 1 to ~1000 kDa. The small peak present at ~1000 kDa likely represents stable macromolecular aggregates in the sample. The SHS elution profile contained four peaks, including three small, broad peaks with modes corresponding to M_r of ~800, 100 and 15 kDa and a major peak corresponding to ~1.1 kDa. The neutral fraction (S-I) elution profile had a bimodal profile, with peak modes corresponding to M_r of ~700 and 15 kDa. The elution profiles of acidic fractions, S-II and S-III, contained three peaks (modes corresponding to M_r of ~700, 100 and 2 kDa) and two peaks (modes corresponding to M_r of ~700 and 2 kDa), respectively.

Fraction S-II, the most abundant fraction isolated by DEAE cellulose chromatography (>90% of total yield), was further fractionated using Sephadex G-50 chromatography. Three sub-fractions were obtained and designated as S-II-1, S-II-2 and S-II-3, based on total carbohydrate, UV absorbance (254 nm) and fluorescence ($\lambda_{ex} = 355$ nm, $\lambda_{em} = 450$ nm) elution profiles (Fig. 2A). The HP-SEC refractive index elution profile of sub-fraction S-II-1 was similar to that of its parent fraction (S-II) in the M_r region of 20 to ~800 kDa (Fig. 2B). In contrast, both fractions S-II-2 and S-II-3 eluted primarily as single peaks, with modes corresponding to M_r of ~1.8 and 3.1 kDa, respectively (Fig. 2B). Note that the average M_r of sub-fractions S-II-2 and S-II-3 was less than the nominal M_r cut-off of the membrane used for concentrating the crude SHS. Thus, it is likely that fraction S-II consisted of non-covalent complexes or micelles that were dissociated under the buffer/salt/mechanical conditions of the final Sephadex G-50 chromatography step. Indeed, it has been reported previously that concentrated solutions of humic substances can form micelles that cannot be filtered even through 100 kDa membranes (Benedetti et al., 2002; Brown et al., 2004). Furthermore, charge effects, solution conditions and membrane surface characteristics have also been shown to impact ultrafiltration and SEC fractionation, with various organic components being affected differently (Buffle and Leppard, 1995; Schafer et al., 2002; Benedetti et al., 2002).

Lyophilization of the fractions resulted in powders differing in color from white (S-I) to black (S-III), and analysis of carbohydrate and protein content indicated a wide range in composition between fractions (Table 1). In general, the primary fractions and sub-fractions with the lowest carbohydrate content contained the highest levels of protein (e.g. fractions S-III and S-II-3). Sugar composition analysis revealed that polysaccharides in all Shilajit fractions, except for fraction S-II-3, consisted primarily of glucose (Glc), galactose (Gal), xylose (Xyl) and rhamnose (Rha), with Glc and Gal being the dominant monosaccharides. In contrast, fraction S-II-3 contained a minimal amount of Gal, but had a much higher level of glucosamine (GlcA) in mol % than all other fractions (Table 2). Analysis of the Shilajit fractions using the Yariv test showed that all fractions, except for fraction S-II-3, contained type II arabinogalactan (Table 1). This finding supports the current hypothesis that Shilajit originates from a vegetative source (Agarwal et al., 2001).
Figure 2. Chromatographic separation of Shilajit fraction S-II. (A) Shilajit fraction S-II was separated by SEC on Sephadex G-50 and monitored for absorbance at 254 nm (●) and fluorescence (○). Total carbohydrate content in each fraction was determined by the phenol–H₂SO₄ method (detected at 488 nm) (□). Fractions were combined as indicated to obtain the S-II sub-fractions selected for further analysis (designated S-II-1, S-II-2 and S-II-3). (B) S-II sub-fractions were analysed by HP-SEC and monitored with a refractive index detector, as described. Peak retention times of the indicated pullulan (PUL) and polyethylene glycol (PEG) standards are shown for reference.

Table 1. Chemical and physical properties of Shilajit fractions

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Color (powder)</th>
<th>Chemical features</th>
<th>Carbohydrate content (%)</th>
<th>Yariv test</th>
<th>Protein content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHS</td>
<td>Dark brown</td>
<td>–</td>
<td>40</td>
<td>Positive</td>
<td>4.5</td>
</tr>
<tr>
<td>S-I</td>
<td>White</td>
<td>Neutral</td>
<td>47</td>
<td>Positive</td>
<td>0.2</td>
</tr>
<tr>
<td>S-II</td>
<td>Brown</td>
<td>Acidic</td>
<td>36</td>
<td>Positive</td>
<td>2.3</td>
</tr>
<tr>
<td>S-III</td>
<td>Black</td>
<td>Acidic</td>
<td>21</td>
<td>Positive</td>
<td>6.8</td>
</tr>
<tr>
<td>S-II-1</td>
<td>Brown</td>
<td>Acidic</td>
<td>56</td>
<td>Positive</td>
<td>0.2</td>
</tr>
<tr>
<td>S-II-2</td>
<td>Brown</td>
<td>Acidic</td>
<td>34</td>
<td>Positive</td>
<td>2.5</td>
</tr>
<tr>
<td>S-II-3</td>
<td>Pale brown</td>
<td>Acidic</td>
<td>14</td>
<td>Negative</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Table 2. Monosaccharide composition (mol %) of the Shilajit fractions

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Glc</th>
<th>Gal</th>
<th>Xyl</th>
<th>Ara</th>
<th>Rha</th>
<th>GalA</th>
<th>GlcA</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHS</td>
<td>41</td>
<td>32</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>S-I</td>
<td>57</td>
<td>26</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>S-II</td>
<td>34</td>
<td>35</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>S-III</td>
<td>43</td>
<td>24</td>
<td>13</td>
<td>3</td>
<td>13</td>
<td><2</td>
<td>4</td>
</tr>
<tr>
<td>S-II-1</td>
<td>34</td>
<td>38</td>
<td>8</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td><2</td>
</tr>
<tr>
<td>S-II-2</td>
<td>37</td>
<td>31</td>
<td>10</td>
<td>3</td>
<td>9</td>
<td>10</td>
<td><2</td>
</tr>
<tr>
<td>S-II-3</td>
<td>46</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>17</td>
<td><2</td>
<td>20</td>
</tr>
</tbody>
</table>
et al., 2007). Indeed, latex bearing plants (Euphorbia royleana Boiss, Trifoleum repens) and bryophytes present in the vicinity of Shilajit-exuding rocks contain a large amount of arabinogalactan (Saare-Surminski et al., 2000; Popper and Fry, 2003).

Fluorescence spectrometry was used to determine the extent of humification in the Shilajit fractions and standard FA samples (Zsolnay et al., 1999; Ohno, 2002). It was found that the corrected values of HIX and the E4/E6 ratios were lower for the Shilajit fractions, compared with the standard FA obtained from IHSS (Fig. 3). These lower HIX values indicate that the Shilajit fractions are enriched in polysaccharides and probably other weakly chromophoric biomolecules (Ohno et al., 2007).

Figure 3. Humification index (HIX) and E4:E6 ratio of Shilajit fractions and standard FA. Values were determined for each sample, as described under Materials and Methods. The data are presented as the mean ± SEM of three independent experiments.

Elemental composition

The elemental composition of the primary Shilajit fractions (S-I, S-II, and S-III) is shown in Table 3. The atomic ratios of H/C, O/C and N/C were calculated, which are commonly used as indicators of structural characteristics of humic substances and their diagenetic history (Kim et al., 2003). The van Krevelen diagram, created by plotting H/C vs O/C, showed that the humic substances from Shilajit were clustered near the carbohydrate region, suggesting that they could be products of polysaccharide degradation and/or contain native polysaccharides (Fig. 4). The average O/C ratio, which is indicative of carbohydrate content, carboxylic groups and the degree of oxidation, was higher in the Shilajit fractions than in standard FA and humic acid samples (Fig. 4). Conversely, the Shilajit fractions had lower C/N ratios than the standard FA and humic acid samples, except for Pony Lake FA, which is derived primarily from carbohydrates and proteins of algae and cyanobacteria (Brown et al., 2004; McKnight et al., 1994).

NMR analysis

The 1H-NMR spectrum of crude Shilajit was close to that of Shilajit obtained from other mountain regions (e.g. see Jung et al., 2002) and contained much stronger signals in the aliphatic (0.5–2.8 ppm) and aromatic (6–8 ppm) regions, compared with spectra of the isolated Shalajit fractions. In general, the spectra of crude SHS and primary fractions S-II and S-III were similar to each other, and proton signals in the region from 0.0 to 5.5 ppm were more separated than in the same region of spectra from fraction S-I (Fig. 5A).

The chemical shifts of anomic protons were evaluated according to data reported previously for humic
substances and polysaccharides (Gane et al., 1995; Dong and Fang, 2001). 1H-NMR spectra of the Shilajit fractions indicated the presence of alkyl components (0.5–2.3 ppm), including methylene groups from methyleneic chains (0.94–1.38 ppm) and terminal methyl groups (0.0–0.94 ppm). The spectra of the fractions indicated a significant amount of methylene and methyl groups α to carbonyl groups and/or attached to aromatic rings, typically resonating in the 1.8–2.7 ppm region. The spectrum of fraction S-II contained strong sharp signals at 1.8–1.9 ppm and 3.2 ppm, which can arise from protons belonging to repetitive chemical fragments, such as protons on CH$_3$–CO– and CH$_3$–O– groups that are formed during humification, possibly by oxidative degradation (Ruggiero et al., 1980). In comparison, these peaks were absent in fraction S-I, which contains much more native arabinogalactan. The signal at 2.1 ppm in the spectra of fractions S-II and S-III indicates the presence of α-methyl protons in ketones. Fraction S-III exhibited small, unique proton signals in the region of 2.1–3.1 ppm. For example, a pair small doublets at 2.55–2.68 ppm is consistent with the presence of methylene protons (–CH$_2$–) in acyl groups (R–CH$_2$–C\equivO), such as in free or esterified carboxylic groups (C\equivO). Spectra of all Shilajit fractions and the parent Shilajit sample showed a broad proton resonance between 3.3 and 4.2 ppm, with a maximum near 3.6–3.7 ppm. Resonances in this region derive from protons belonging to methyl and methylene groups connected to electronegative atoms, primarily oxygen, which are present in carbohydrates, methoxy compounds, carboxylic acids and organic amines (Sciacovelli et al., 1977; Wilson et al., 1983; Grasso et al., 1990; Yamauchi et al., 2004). The signals in the region of 4.0–5.5 ppm are partially due to protons on alcoholic OH groups. Signals for aromatic protons at 5.6–6.1 ppm were barely visible in the 1H-NMR spectra and appeared as weak resonances in all three samples. However, the spectrum of fraction S-III showed a broad resonance in the 5.8–6.9 and 6.9–8.6 ppm regions, which are normally attributed to protons in olefinic and aromatic moieties, respectively. Spectra of fractions S-I and S-II showed very small broad signals at these regions, possibly because the aromatic groups in these samples was highly oxidized. The sharp peak at 8.35 ppm in the spectrum of fraction S-III suggests the presence of formyl groups covalently bonded to the macromolecules of humic substances (Jokic et al., 1995).

The 1H-NMR spectra of sub-fractions S-II-1 and S-II-2 were similar to that of the parent fraction S-II, but with less prominent peaks at 1.9 and 3.2 ppm (data not shown). The spectrum of fraction S-II-3 showed a broad resonance in the 5.8–6.9 and 6.9–8.6 ppm regions, which are normally attributed to protons in olefinic and aromatic moieties, respectively. Spectra of fractions S-I and S-II showed very small broad signals at these regions, possibly because the aromatic groups in these samples was highly oxidized. The sharp peak at 8.35 ppm in the spectrum of fraction S-III suggests the presence of formyl groups covalently bonded to the macromolecules of humic substances (Jokic et al., 1995).

The 1H-NMR spectra of sub-fractions S-II-1 and S-II-2 were similar to that of the parent fraction S-II, but with less prominent peaks at 1.9 and 3.2 ppm (data not shown). The spectrum of fraction S-II-3 showed a broad resonance in the 5.8–6.9 and 6.9–8.6 ppm regions, which are normally attributed to protons in olefinic and aromatic moieties, respectively. Spectra of fractions S-I and S-II showed very small broad signals at these regions, possibly because the aromatic groups in these samples was highly oxidized. The sharp peak at 8.35 ppm in the spectrum of fraction S-III suggests the presence of formyl groups covalently bonded to the macromolecules of humic substances (Jokic et al., 1995).

The 1H-NMR spectra of sub-fractions S-II-1 and S-II-2 were similar to that of the parent fraction S-II, but with less prominent peaks at 1.9 and 3.2 ppm (data not shown). The spectrum of fraction S-II-3 showed a broad resonance in the 5.8–6.9 and 6.9–8.6 ppm regions, which are normally attributed to protons in olefinic and aromatic moieties, respectively. Spectra of fractions S-I and S-II showed very small broad signals at these regions, possibly because the aromatic groups in these samples was highly oxidized. The sharp peak at 8.35 ppm in the spectrum of fraction S-III suggests the presence of formyl groups covalently bonded to the macromolecules of humic substances (Jokic et al., 1995).
humic substances and native polysaccharides (Baddi et al., 2004; Jokic et al., 1995; Polle et al., 2002). These spectra were characterized by the presence of many signals in the area of aliphatic carbons (0–50 ppm), carbohydrate carbons (60–96 ppm), anomic carbons (96–108 ppm), aromatic carbons (108–145 ppm) and carboxyl and carbonyl carbons (163–190 ppm). However, signals for methoxyl carbons (50–60 ppm), phenolic carbons (145–163 ppm) and ketone carbons (190–220 ppm) were absent. The alky region (0–50 ppm) of fraction S-II showed a maximum at 18 ppm, which can be attributed to acetate groups in carbohydrates and corresponds to the CH$_3$–CO– groups with sharp signals at 1.8 ppm in the 1H-NMR spectrum of the fraction. The intensity of the peak at 160–200 ppm, attributed to carboxylic, amide and ester carbons, was greater in fraction S-III, compared with fraction S-II. This feature is likely due to an increase in carbohydrate groups and correlates with the strong anionic properties of this fraction. Signals in the region of 60–108 ppm are usually assigned to C$_n$H$_m$O$_p$ and protonated ring carbons (C$_2$–C$_5$) of carbohydrates (Jokic et al., 1995).

In comparison with the 13C-NMR spectra of natural FA from different sources (for example, see Baddi et al., 2004), fractions S-II and S-III contained lower levels of aromatic carbon. Thus, 13C- and 1H-NMR data suggest predominantly carbohydrate-derived material in isolated Shilajit fractions with a low contribution of aromatic carbons.

Complement-fixing activity of Shilajit fractions and FA from IHSS

Crude SHS and all fractions isolated from the Shilajit showed dose-dependent fixation of human complement in vitro with ICH$_{50}$ values ranging from 15.4 to 273 μg/mL (Table 4). The most potent complement-fixing ability was found in the relatively low-molecular weight fraction S-II-3, which contained the lowest amount of carbohydrate. In contrast, the neutral fraction S-I failed to fix complement, even at the maximal concentration tested (500 μg/mL) (data not shown). A plot of carbohydrate content in the Shilajit fractions versus the reciprocal values of ICH$_{50}$ (1/ICH$_{50}$) demonstrated a good negative linear correlation ($r = -0.848; n = 7; p < 0.02$) between these values (Fig. 6).

Five FA standards from IHSS were also tested for complement-fixing activity. All samples exhibited complement-fixing activity (ICH$_{50}$) (Table 4). It is interesting to note that the least active standard (Pony Lake FA) is formed in an Antarctic lake without lignin sources and presumably consists of diagenetic products (McKnight et al., 1994). Plots of HIX versus ICH$_{50}$ did not demonstrate any correlation when the plots contained the Shilajit fractions together with FA standards ($r = 0.201, n = 11$ for E4:E6 vs ICH$_{50}$, $r = 0.314, n = 11$ for HIX vs ICH$_{50}$). However, plots of HIX versus ICH$_{50}$ did show some correlation when the plots contained the Shilajit fractions only ($r = 0.659$). Furthermore, the integrated emission in the area of the red-shift (435–480 nm) of synchronous fluorescence spectra and 1/ICH$_{50}$ were significantly correlated in separated plots containing the Shilajit fractions and FA standards, $r = 0.838$ ($p < 0.02$) and $r = 0.962$ ($p < 0.01$), respectively (Fig. 7). Thus, preferential complement-fixing activity is found in the material with higher levels of humification.

Since endotoxin can be a contaminant of isolated organic materials, this study determined whether endotoxin could be contributing to the biological activity of the Shilajit fractions. First, LPS from *E. coli* was evaluated for complement-fixing activity; however, no activity was found over the concentrations tested (2–250 μg/mL) (data not shown). To further verify that endotoxin contamination of the samples did not contribute to complement-fixing activity, fraction S-II-3 was applied to a column of endotoxin-removing gel and the eluted

![Figure 6. Plot of complement-fixing activity of Shilajit fractions versus carbohydrate content in the fractions. Complement-fixing activity is represented as inverse (ICH$^{-1}$). Dashed lines indicate area of the 95% confidence band.](Phytother. Res. (2008) DOI: 10.1002/ptr)
sample was analysed. As shown in Fig. 8, the complement-fixing activity of fraction S-II-3, after removal of possible endotoxin, was essentially the same as that of the control fraction S-II-3. Thus, these data clearly demonstrate that endotoxin was not responsible for the biological activity of the Shilajit fractions.

Content of carboxylic groups in Shilajit fractions and FA

As noted above, the highest complement-fixing ability was found in the relatively low-molecular weight fraction S-II-3, which contains the lowest amount of carbohydrate. During humification, a progressive transformation of polysaccharides into other oxygenated compounds, particularly carboxylic groups, takes place (Castaldi et al., 2005). Indeed, (poly)carboxylic acids with a very limited number of hydroxyl groups are the major compound class in FA (Reemtsma et al., 2006). Thus, we estimated content of carboxylic groups in the Shilajit fractions and FA from HISS. The content of carboxylic groups in fraction S-II-3 was close to the content in FA from other natural sources, such as Suwannee River, Waskish Peat and Nordic Aquatic FA (Table 4). Plots of the carboxylic group content versus the reciprocal of $1/ICH_{50}$ demonstrated a good positive linear correlation $r = 0.880$ ($n = 12; p < 0.001$) between these values (Fig. 9). Thus, these results suggest that carboxylic groups are important for complement-fixing activity of the Shilajit fractions and FA from other natural sources. One possibility is that carboxylic groups play a role in interaction with complement components. For example, carboxylic groups have been reported to be the main molecular fragments required for interaction of humic substances with cell membranes (Muscolo et al., 2007), complexation with cationic species (Livens, 1991; Prado et al., 2006; Esteves da Silva and Oliveira, 2002) and association with inorganic surfaces (Fu and Quan, 2006). Additionally, fraction S-II-3 fraction contains the highest level of glucosamine among the Shilajit fractions (Table 3), suggesting the possibility that glucosamine...
residues may also be involved in the biological activity observed. Indeed, previous studies have shown that various antigens with complement-fixing capacity were also enriched in glucosamine (Shinagawa and Yanagawa, 1972; Hammerberg et al., 1980).

The potent complement-fixing activity of humic substances isolated from Shilajit may contribute to the therapeutic potential of Shilajit extracts. The complement system plays an essential role in innate immunity, contributing to inflammatory responses and the destruction and removal of pathogens (reviewed in Gasque, 2004). However, excessive or uncontrolled complement activation can also contribute to host tissue damage, and therapeutic strategies have been developed to inhibit this process (Mollnes and Kirschfink, 2006). Likewise, the removal of complement by fixation has also been proposed to be a potential therapeutic strategy for treating inflammatory diseases (Nergard et al., 2004). A number of reports have shown polysaccharides from different plants can enhance wound healing, and some of these polysaccharides also have potent complement-fixing activity (Table 5). For example, Samuelsen et al. (1995) reported that the wound healing properties of *Plantago major* L. polysaccharides were at least partly due to their ability to fix complement. Similarly, wound healing properties of polysaccharides from *Biophytum petersianum* Klotzsch were reported to be related to their effects on the complement system (Inngjerdingen et al., 2006). Indeed, Wagner (1990) suggested that the anti-complement properties of plant-derived polysaccharides contribute significantly to their antiinflammatory properties. These studies suggest that products of oxygenated degradation of plant polysaccharides also have potent complement-fixing properties in vitro and are among the most active of the natural products reported to date.

Acknowledgements

We would like to thank Dr Andrei Khlebnikov (Department of Chemistry, Altai State Technical University, Barnaul, Russia) for reviewing this manuscript and providing helpful suggestions. We would also like to thank Dr Scott Busse (Montana State University, Bozeman, MT) for help in running the NMR samples. This work was supported in part by the National Institutes of Health grants AT004986 and RR020185 and contract HHSN27620040009C, an equipment grant from the M. J. Murdock Charitable Trust, and the Montana State University Agricultural Experimental Station. The U.S. Army Space and Missile Defense Command, 64 Thomas Drive, Frederick, MD 21702 is the awarding and administering acquisition office. The content of this report does not necessarily reflect the position or policy of the U.S. Government.

Table 5. Plant pectin polysaccharides with the highest reported complement-fixing activity

<table>
<thead>
<tr>
<th>Plant common name</th>
<th>Fraction</th>
<th>M_r (kDa)</th>
<th>ICH_{50} (μg/mL)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantago major</td>
<td>PMII</td>
<td>46–48</td>
<td>25</td>
<td>Samuelsen et al., 1996</td>
</tr>
<tr>
<td>Glinus oppositifolius</td>
<td>GOA1</td>
<td>70</td>
<td>34</td>
<td>Inngjerdingen et al., 2005</td>
</tr>
<tr>
<td></td>
<td>GOA2</td>
<td>30–39</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Avicennia marina</td>
<td>HAM-3-IIb-II</td>
<td>105</td>
<td>23</td>
<td>Fang et al., 2006</td>
</tr>
<tr>
<td>Vernonia kotschyanana</td>
<td>Vk2a</td>
<td>1150</td>
<td>2</td>
<td>Nergard et al., 2006</td>
</tr>
<tr>
<td>Biophytum petersianum</td>
<td>BP100 III</td>
<td>31</td>
<td>9</td>
<td>Inngjerdingen et al., 2006</td>
</tr>
<tr>
<td>Trichilia emetica</td>
<td>Te 100 acidic 4</td>
<td>223</td>
<td><15</td>
<td>Diallo et al., 2003</td>
</tr>
</tbody>
</table>

