Using mathematical models & approaches to quantify BRAIN (dynamic) Positron Emission Tomography (PET) data

Imaging Seminars Series
Stony Brook University, Health Science Center
Stony Brook, NY – January 29th, 2013

Francesca Zanderigo, PhD
Application of mathematical models & approaches to PET data (Time Activity Curves - TACs) to estimate PET OUTCOMES of interest.

Stats (e.g., group analysis)

Reconstruction

Co-registration

Motion correction

The role of modeling in PET

[11C]DASB
[11C]PIB
[18F]FDG
[11C]WAY
[11C]CUMI
[11C]PE2I
[11C]ABP
...

MDDs
PTSDs
ADs
...

Application of mathematical models & approaches to PET data (Time Activity Curves - TACs) to estimate PET OUTCOMES of interest.
“To be useful in clinical investigations, PET needs to be quantitatively correct: the information collected by the camera (i.e., the “pictures” of the radioligand distribution in the brain) must be translated into numbers that relate to well-defined biologic entities. Short of a validated quantitative analysis, the information is of little value for clinical investigations.”

What is a mathematical model?

MODEL = a representation that includes only some “relevant” aspects of reality

REALITY = a biological/physiological system, whose complexity and (indirect) measurements issues (e.g., in vivo) make the use of models appealing

MATHEMATICAL MODEL = set of mathematical equations describing the relationships existing between the variables of the real system

X SYSTEM

Questions about X

Answers for X

M MODEL

Questions about M

Answers from M

To DESCRIBE - QUANTIFY - INTERPRET - PREDICT
The system under investigation in brain PET
The system under investigation in brain PET

RADIOligand in brain tissue that interacts with the receptors
PET data @ the Region Of Interest (ROI) level

PET images

TISSUE ROI TAC

MODEL

ESTIMATES
blood flow,
glucose uptake,
potential binding...

NUMBERS!!!
PET data at the voxel level

TISSUE VOXEL TAC

ESTIMATES blood flow, glucose uptake, potential binding...

PARAMETRIC MAPS!!!
ROI vs. voxel

ROI

- ✓ **High Signal-to-Noise Ratio (SNR)**
- ✓ **Limited number (< 100) of ROIs**: computationally-demanding analysis can be applied
- ★ **Original spatial resolution lost**
- ★ **Affected by the methods used for ROIs delineation, PET-MRI co-registration etc.**
- ★ **Heterogeneity issue**

voxel

- ★ **Low SNR**
- ★ **Elevated number (~10^5) of voxels**: need for faster & “simpler” methods of analysis
- ✓ **Original spatial resolution preserved**
- ✓ **Exploratory analysis (in absence of a priori hypothesis on ROIs)**
- ✓ **Heterogeneity issue lessens**
The system under investigation in brain PET

INPUT

RADIOLIGAND IN ARTERIAL PLASMA AVAILABLE TO BIND

OUTPUT

RADIOLIGAND IN BRAIN TISSUE THAT INTERACTS WITH THE RECEPTORS
Input Function (IF) & metabolites

IF & metabolites-corrected IF (cIF)
Input Function (IF) & metabolites

Metabolite Corrected Plasma Fit

Metabolite Corrected Plasma Fit Linear
Invasive PET

Full arterial & metabolites analysis

✓ “Gold-standard”: to measure how much radioligand is “supplied” to the brain tissue to properly quantify the “uptake” amount

★ Arterial sampling: invasive, costly, time-consuming, risky & uncomfortable for subjects, unfeasible in clinical practice
- tends to deter subjects’ participation
- requires highly specialized medical staff & labs (blood analysis)

★ (tech note) Mathematical problems related to the presence of noise in the measured arterial data
The system under investigation in brain PET

- **INPUT**
 - Radioligand in arterial plasma available to bind

- **OUTPUT**
 - Radioligand in brain tissue that interacts with the receptors
The third component

INPUT

RESPONSE FUNCTION

OUTPUT

\[\text{RESPONSE FUNCTION} \otimes \text{RESPONSE FUNCTION} \]
How can we describe the response of a system?

DATA MODELS
(IN-OUT or BLACK BOX)

SYSTEM MODELS
(STRUCTURAL or WHITE BOX)
Compartmental models: basics

They provide a description of the system internal mechanisms, based on physical principles or structural hypotheses (e.g., mass balance & conservation)

COMPARTMENT: a quantity of “matter” homogeneously “behaving” in the system (e.g., the same substance in different physical spaces OR two different substances in the same physical space)

COMPARTMENTAL MODEL: a set of compartments connected to each other

CONNECTION: substance flow, controlling/regulatory signal (e.g., transport between two sites OR chemical transformation in one site)

2-Tissue Compartment (2TC) model

\[C_p(t) \xrightarrow{K_1} C_{f+ns}(t) \xrightarrow{k_3} C_s(t) \]
\[C_p(t) \xleftarrow{k_2} C_{f+ns}(t) \xleftarrow{k_4} C_s(t) \]

RADIOLIGAND CONCENTRATION IN THE ARTERIAL PLASMA CORRECTED FOR METABOLITES

TISSUE CONCENTRATION OF THE SPECIFICALLY BOUND RADIOLIGAND

TISSUE CONCENTRATION OF THE FREE + NON-SPECIFICALLY BOUND RADIOLIGAND
In vitro - in vivo

In vitro

\[
R + F \rightleftharpoons B
\]

- **RECEPTORS**
- **FREE RADIOLIGAND**
- **BOUND RADIOLIGAND-RECEPTOR COMPLEX**
- **Michaelis-Menten @ equilibrium**
- **Dissociation Constant**
- **Density of Receptors**

Equation

\[
B = \frac{B_{\text{max}}F}{K_D + F}
\]

In vivo

\[
k_3 \propto k_{\text{on}}
\]

\[
k_4 = k_{\text{off}}
\]

\[
BP = \frac{B_{\text{max}}}{K_D} = B_{\text{max}} \times \frac{1}{K_D} = B_{\text{max}} \times \text{affinity}
\]
Matching data & model

TISSUE ROI TAC

activity/concentration [µCi/cm³]

0 2.5 3

0 23 46 69 92 115

time [min]

$C_f(t)$

K_1

$C_{f+ns}(t)$

k_2

k_3

$C_s(t)$

k_4

k_1

k_3

k_4
Fitting functions of cIF & model rate constants
1-Tissue Compartment (1TC) model

\[C_p(t) \xrightarrow{K_1} C_t(t) \xleftarrow{k_2} \]

RADIOLOGAND CONCENTRATION
IN THE ARTERIAL PLASMA
CORRECTED FOR METABOLITES

TISSUE CONCENTRATION OF THE
FREE + NON-SPECIFICALLY + (SPECIFICALLY)
BOUND RADIOLOGAND

Matching data & model

TISSUE ROI TAC

\[Ct(t) \]

activity/concentration [µCi/cm³]

0 0.5 1 1.5 2 2.5 3

0 23 46 69 92 115

time [min]

\[C_{P(t)} \]

activity/concentration [µCi/cm³]

0 0.1 0.2 0.3 0.4 0.5 0.6

0 10 20 30 40 50 60 70 80 90 100 110

time [min]

\[C_{P(t)} \]

\[C_{P+ns(t)} \]

\[C_{s(t)} \]

\[C_{t(t)} \]

\[K_1 \]

\[k_2 \]

\[k_3 \]

\[k_4 \]
Kinetic analysis

“GOLD-STANDARD”

MICRO-PARAMETERS (k_i)
MACRO-PARAMETRES (V_T, B_P_f)

IN VIVO
IN VITRO

OPTIMIZATION

NON-LINEARITY

RADIOLIGAND SPECIFIC
2TC irreversible (e.g., $^{[18F]}$FDG)
2TC constrained (e.g., $^{[11C]}$WAY)

NON IDENTIFIABILITY
NON STABILITY

COMPUTATIONAL DEMAND
NOT VOXEL-ANALYSIS FRIENDLY

CONVERGING ISSUES

push towards simpler (but less informative) analysis
Graphical Analysis (GA)

- **PATLAK PLOT**

- **LOGAN PLOT**

"MANIPULATIONS" OF THE MODEL EQUATIONS

"TRANSFORMATIONS" OF THE DATA
Patlak plot

\[K_i = \left[\frac{ml_{\text{plasma}}}{gr_{\text{tissue}} \cdot \text{min}} \right] \]

FRACTIONAL IRREVERSIBLE METABOLIC RATE OF THE RADIOLIGAND

\[\log(C_{\text{input}}(t))/C_{\text{input}(0)} \text{ vs } \frac{\text{ROI}(t)}{C_{\text{input}(t)}} \]

\([^{18}\text{F}]\text{FDG in the brain}\]

Slope \(=\) how many milliliters of radioligand present in the plasma are metabolized for each gram of tissue every minute
Logan plot

\[V_T = \left[\frac{ml_{\text{plasma}}}{gr_{\text{tissue}}} \right] \]

RADIOLIGAND DISTRIBUTION VOLUME

\((= \text{ratio between the radioligand concentration inside the tissue & in the plasma @ steady state}) \)
<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Small computational time</td>
<td>★ Only 1 macro-parameter estimated (no info on micro-parameters)</td>
</tr>
<tr>
<td>✓ No need for a compartmental model</td>
<td>★ Patlak works only for irreversible radioligand</td>
</tr>
<tr>
<td>defined in details</td>
<td>★ Logan estimates are affected by bias</td>
</tr>
<tr>
<td>✓ Easy implementation</td>
<td>★ The choice of the “linearity time window” can be not trivial & impact the results</td>
</tr>
</tbody>
</table>
From “bloody” to “bloodless”

INPUT is common to all brain regions/voxels

RADIOLIGAND IN ARTERIAL PLASMA AVAILABLE TO BIND

INPUT is common to all brain regions/voxels
Reference Region Approaches (RRAs)
Ideal Reference Region

\[C_p(t) \xrightarrow{K_1} C_i(t) \xrightarrow{k_2} C_p(t) \]

- devoid of specific binding
- invariant between groups
- independent of treatment effect
Full Reference Tissue Model (FRTM)

FRTM relies on the presence of a region without specific binding that can be used as RR for all the others.

\[C_{f+ns}(t) \]

\[C_{RR}(t) \]

\[C_p(t) \]

\[C_s(t) \]

Any target region

J. Cereb. Blood Flow Metab. 16: 42–52
Simplified Reference Tissue Model (SRTM)

INPUT is COMMON to both target region & RR

\(C_p(t) \)

\(K_1 \)

\(k_2 \)

\(C_p(t) \)

\(K_1' \)

\(k_2' \)

\(C_{RR}(t) \)

\(C_{RR}(t) \)

\(Ci(t) \)

ANY TARGET REGION

SRTM RELIES ON THE PRESENCE OF A REGION WITHOUT SPECIFIC BINDING THAT CAN BE USED AS RR FOR ALL THE OTHERS

The non-displaceable binding potential (BP_{ND}) is related to the slope.

<table>
<thead>
<tr>
<th>PROs</th>
<th>CONs</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Do not require arterial sampling</td>
<td>★ Require RR (devoid of receptors of interest & invariant between groups), not available for many radioligands</td>
</tr>
<tr>
<td>✓ Easy implementation</td>
<td>★ Only the non-displaceable binding potential (BP_{ND}), only linearly related to B_{available} & K_D</td>
</tr>
<tr>
<td>✓ Cheap</td>
<td>★ Different degrees of BP_{ND} BIAS compared to cIF-based analysis*</td>
</tr>
</tbody>
</table>

*Zanderigo et al. Reference region approaches in PET: a comparative study on multiple radioligands. In submission with JCBF&Met (third review)
A custom-built software: BrainFit
Other alternatives

1. **Bolus + infusion** protocols

2. **Pseudo-equilibrium** methods

3. **Auto-radiographic** protocols

4. **Semi-quantitative** analysis (e.g., Standard Uptake Value, SUV – Time To Peak, TTP)
Other alternatives

1. **Bolus + infusion protocols**

FIG. 4. Region-of-interest data from basal ganglia (●) and cerebellum (■) following bolus plus infusion administration of \[^{11}\text{C}]\text{raclopride}\) (administered dose, 6.1 mCi). The bolus portion of the dose (\(K_{bol}\)) was equal to the volume administered during 60 min of infusion.

Other alternatives

2. Pseudo-equilibrium methods

FIG. 3. Identification of the point in time at which equilibrium occurs for \(^{11}C\)raclopride binding to D₂-dopamine receptors in the putamen in a healthy subject. Measured values in the cerebellum were subtracted from measured values in the putamen. The difference was defined as specific binding and fitted to a set of three exponentials. Equilibrium was defined as occurring at the point in time when \(dC_{v}/dt\) for specific binding was 0.

Other alternatives

3. Auto-radiographic protocols

4. Semi-quantitative analysis (e.g., Standard Uptake Value, SUV - Time To Peak, TTP)

THANKS FOR YOUR ATTENTION! :-)